| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbc3ie | GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| sbc3ie.1 | ⊢ A ∈ V |
| sbc3ie.2 | ⊢ B ∈ V |
| sbc3ie.3 | ⊢ C ∈ V |
| sbc3ie.4 | ⊢ ((x = A ∧ y = B ∧ z = C) → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| sbc3ie | ⊢ ([̣A / x]̣[̣B / y]̣[̣C / z]̣φ ↔ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc3ie.1 | . 2 ⊢ A ∈ V | |
| 2 | sbc3ie.2 | . 2 ⊢ B ∈ V | |
| 3 | sbc3ie.3 | . . . 4 ⊢ C ∈ V | |
| 4 | 3 | a1i 10 | . . 3 ⊢ ((x = A ∧ y = B) → C ∈ V) |
| 5 | sbc3ie.4 | . . . 4 ⊢ ((x = A ∧ y = B ∧ z = C) → (φ ↔ ψ)) | |
| 6 | 5 | 3expa 1151 | . . 3 ⊢ (((x = A ∧ y = B) ∧ z = C) → (φ ↔ ψ)) |
| 7 | 4, 6 | sbcied 3083 | . 2 ⊢ ((x = A ∧ y = B) → ([̣C / z]̣φ ↔ ψ)) |
| 8 | 1, 2, 7 | sbc2ie 3114 | 1 ⊢ ([̣A / x]̣[̣B / y]̣[̣C / z]̣φ ↔ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 Vcvv 2860 [̣wsbc 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |