New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbcco3gOLD GIF version

Theorem sbcco3gOLD 3192
 Description: Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
sbcco3g.1 (x = AB = C)
Assertion
Ref Expression
sbcco3gOLD ((A V x B W) → ([̣A / x]̣[̣B / yφ ↔ [̣C / yφ))
Distinct variable groups:   x,A   φ,x   x,C
Allowed substitution hints:   φ(y)   A(y)   B(x,y)   C(y)   V(x,y)   W(x,y)

Proof of Theorem sbcco3gOLD
StepHypRef Expression
1 sbcco3g.1 . . 3 (x = AB = C)
21sbcco3g 3191 . 2 (A V → ([̣A / x]̣[̣B / yφ ↔ [̣C / yφ))
32adantr 451 1 ((A V x B W) → ([̣A / x]̣[̣B / yφ ↔ [̣C / yφ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176   ∧ wa 358  ∀wal 1540   = wceq 1642   ∈ wcel 1710  [̣wsbc 3046 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-sbc 3047  df-csb 3137 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator