New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcco3gOLD | GIF version |
Description: Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbcco3g.1 | ⊢ (x = A → B = C) |
Ref | Expression |
---|---|
sbcco3gOLD | ⊢ ((A ∈ V ∧ ∀x B ∈ W) → ([̣A / x]̣[̣B / y]̣φ ↔ [̣C / y]̣φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcco3g.1 | . . 3 ⊢ (x = A → B = C) | |
2 | 1 | sbcco3g 3192 | . 2 ⊢ (A ∈ V → ([̣A / x]̣[̣B / y]̣φ ↔ [̣C / y]̣φ)) |
3 | 2 | adantr 451 | 1 ⊢ ((A ∈ V ∧ ∀x B ∈ W) → ([̣A / x]̣[̣B / y]̣φ ↔ [̣C / y]̣φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |