NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbcco3gOLD GIF version

Theorem sbcco3gOLD 3193
Description: Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sbcco3g.1 (x = AB = C)
Assertion
Ref Expression
sbcco3gOLD ((A V x B W) → ([̣A / x]̣[̣B / yφ ↔ [̣C / yφ))
Distinct variable groups:   x,A   φ,x   x,C
Allowed substitution hints:   φ(y)   A(y)   B(x,y)   C(y)   V(x,y)   W(x,y)

Proof of Theorem sbcco3gOLD
StepHypRef Expression
1 sbcco3g.1 . . 3 (x = AB = C)
21sbcco3g 3192 . 2 (A V → ([̣A / x]̣[̣B / yφ ↔ [̣C / yφ))
32adantr 451 1 ((A V x B W) → ([̣A / x]̣[̣B / yφ ↔ [̣C / yφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540   = wceq 1642   wcel 1710  wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048  df-csb 3138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator