NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbco3g GIF version

Theorem csbco3g 3194
Description: Composition of two class substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
Hypothesis
Ref Expression
sbcco3g.1 (x = AB = C)
Assertion
Ref Expression
csbco3g (A V[A / x][B / y]D = [C / y]D)
Distinct variable groups:   x,A   x,C   x,D
Allowed substitution hints:   A(y)   B(x,y)   C(y)   D(y)   V(x,y)

Proof of Theorem csbco3g
StepHypRef Expression
1 csbnestg 3187 . 2 (A V[A / x][B / y]D = [[A / x]B / y]D)
2 elex 2868 . . . 4 (A VA V)
3 nfcvd 2491 . . . . 5 (A V → xC)
4 sbcco3g.1 . . . . 5 (x = AB = C)
53, 4csbiegf 3177 . . . 4 (A V → [A / x]B = C)
62, 5syl 15 . . 3 (A V[A / x]B = C)
76csbeq1d 3143 . 2 (A V[[A / x]B / y]D = [C / y]D)
81, 7eqtrd 2385 1 (A V[A / x][B / y]D = [C / y]D)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wcel 1710  Vcvv 2860  [csb 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048  df-csb 3138
This theorem is referenced by:  csbco3gOLD  3195
  Copyright terms: Public domain W3C validator