NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbceq2a GIF version

Theorem sbceq2a 3058
Description: Equality theorem for class substitution. Class version of sbequ12r 1920. (Contributed by NM, 4-Jan-2017.)
Assertion
Ref Expression
sbceq2a (A = x → ([̣A / xφφ))

Proof of Theorem sbceq2a
StepHypRef Expression
1 sbceq1a 3057 . . 3 (x = A → (φ ↔ [̣A / xφ))
21eqcoms 2356 . 2 (A = x → (φ ↔ [̣A / xφ))
32bicomd 192 1 (A = x → ([̣A / xφφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   = wceq 1642  wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-sbc 3048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator