New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqcoms | GIF version |
Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqcoms.1 | ⊢ (A = B → φ) |
Ref | Expression |
---|---|
eqcoms | ⊢ (B = A → φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2355 | . 2 ⊢ (B = A ↔ A = B) | |
2 | eqcoms.1 | . 2 ⊢ (A = B → φ) | |
3 | 1, 2 | sylbi 187 | 1 ⊢ (B = A → φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-cleq 2346 |
This theorem is referenced by: gencbvex 2902 sbceq2a 3058 sbcco2 3070 eqimss2 3325 uneqdifeq 3639 iotaval 4351 nnsucelr 4429 phi11 4597 phi011 4600 copsex2t 4609 copsex2g 4610 f1ocnvfv 5479 f1ocnvfvb 5480 ov6g 5601 ectocld 5992 ecoptocl 5997 enprmaplem5 6081 ncelncs 6121 1cnc 6140 ncslesuc 6268 |
Copyright terms: Public domain | W3C validator |