NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbceq1a GIF version

Theorem sbceq1a 3057
Description: Equality theorem for class substitution. Class version of sbequ12 1919. (Contributed by NM, 26-Sep-2003.)
Assertion
Ref Expression
sbceq1a (x = A → (φ ↔ [̣A / xφ))

Proof of Theorem sbceq1a
StepHypRef Expression
1 sbid 1922 . 2 ([x / x]φφ)
2 dfsbcq2 3050 . 2 (x = A → ([x / x]φ ↔ [̣A / xφ))
31, 2syl5bbr 250 1 (x = A → (φ ↔ [̣A / xφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   = wceq 1642  [wsb 1648  wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-sbc 3048
This theorem is referenced by:  sbceq2a  3058  elrabsf  3085  cbvralcsf  3199
  Copyright terms: Public domain W3C validator