New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbco | GIF version |
Description: A composition law for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbco | ⊢ ([y / x][x / y]φ ↔ [y / x]φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb2 2035 | . . 3 ⊢ [y / x]y = x | |
2 | sbequ12 1919 | . . . . 5 ⊢ (y = x → (φ ↔ [x / y]φ)) | |
3 | 2 | bicomd 192 | . . . 4 ⊢ (y = x → ([x / y]φ ↔ φ)) |
4 | 3 | sbimi 1652 | . . 3 ⊢ ([y / x]y = x → [y / x]([x / y]φ ↔ φ)) |
5 | 1, 4 | ax-mp 5 | . 2 ⊢ [y / x]([x / y]φ ↔ φ) |
6 | sbbi 2071 | . 2 ⊢ ([y / x]([x / y]φ ↔ φ) ↔ ([y / x][x / y]φ ↔ [y / x]φ)) | |
7 | 5, 6 | mpbi 199 | 1 ⊢ ([y / x][x / y]φ ↔ [y / x]φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sbid2 2084 sbco3 2088 sb9i 2094 |
Copyright terms: Public domain | W3C validator |