Proof of Theorem sb9i
Step | Hyp | Ref
| Expression |
1 | | drsb1 2022 |
. . . . 5
⊢ (∀y y = x →
([y / y]φ ↔
[y / x]φ)) |
2 | | drsb2 2061 |
. . . . 5
⊢ (∀y y = x →
([y / y]φ ↔
[x / y]φ)) |
3 | 1, 2 | bitr3d 246 |
. . . 4
⊢ (∀y y = x →
([y / x]φ ↔
[x / y]φ)) |
4 | 3 | dral1 1965 |
. . 3
⊢ (∀y y = x →
(∀y[y / x]φ ↔
∀x[x / y]φ)) |
5 | 4 | biimprd 214 |
. 2
⊢ (∀y y = x →
(∀x[x / y]φ →
∀y[y / x]φ)) |
6 | | nfnae 1956 |
. . . 4
⊢ Ⅎx ¬ ∀y y = x |
7 | | hbsb2 2057 |
. . . 4
⊢ (¬ ∀y y = x →
([x / y]φ →
∀y[x / y]φ)) |
8 | 6, 7 | alimd 1764 |
. . 3
⊢ (¬ ∀y y = x →
(∀x[x / y]φ →
∀x∀y[x / y]φ)) |
9 | | stdpc4 2024 |
. . . . . 6
⊢ (∀x[x / y]φ → [y / x][x / y]φ) |
10 | | sbco 2083 |
. . . . . 6
⊢ ([y / x][x / y]φ ↔ [y / x]φ) |
11 | 9, 10 | sylib 188 |
. . . . 5
⊢ (∀x[x / y]φ → [y / x]φ) |
12 | 11 | alimi 1559 |
. . . 4
⊢ (∀y∀x[x / y]φ → ∀y[y / x]φ) |
13 | 12 | a7s 1735 |
. . 3
⊢ (∀x∀y[x / y]φ → ∀y[y / x]φ) |
14 | 8, 13 | syl6 29 |
. 2
⊢ (¬ ∀y y = x →
(∀x[x / y]φ →
∀y[y / x]φ)) |
15 | 5, 14 | pm2.61i 156 |
1
⊢ (∀x[x / y]φ → ∀y[y / x]φ) |