NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfs1v GIF version

Theorem nfs1v 2106
Description: x is not free in [y / x]φ when x and y are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfs1v x[y / x]φ
Distinct variable group:   x,y
Allowed substitution hints:   φ(x,y)

Proof of Theorem nfs1v
StepHypRef Expression
1 hbs1 2105 . 2 ([y / x]φx[y / x]φ)
21nfi 1551 1 x[y / x]φ
Colors of variables: wff setvar class
Syntax hints:  wnf 1544  [wsb 1648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649
This theorem is referenced by:  sbnf2  2108  eu1  2225  mopick  2266  2mo  2282  2eu6  2289  clelab  2474  cbvralf  2830  cbvralsv  2847  cbvrexsv  2848  cbvrab  2858  sbhypf  2905  mob2  3017  reu2  3025  sbcralt  3119  sbcralg  3121  sbcrexg  3122  sbcreug  3123  sbcel12g  3152  sbceqg  3153  cbvreucsf  3201  cbvrabcsf  3202  csbifg  3691  cbviota  4345  csbiotag  4372  cbvopab1  4633  cbvopab1s  4635  csbopabg  4638  opelopabsb  4698  opeliunxp  4821  cbvmpt  5677
  Copyright terms: Public domain W3C validator