New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfs1v | GIF version |
Description: x is not free in [y / x]φ when x and y are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfs1v | ⊢ Ⅎx[y / x]φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbs1 2105 | . 2 ⊢ ([y / x]φ → ∀x[y / x]φ) | |
2 | 1 | nfi 1551 | 1 ⊢ Ⅎx[y / x]φ |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1544 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sbnf2 2108 eu1 2225 mopick 2266 2mo 2282 2eu6 2289 clelab 2474 cbvralf 2830 cbvralsv 2847 cbvrexsv 2848 cbvrab 2858 sbhypf 2905 mob2 3017 reu2 3025 sbcralt 3119 sbcralg 3121 sbcrexg 3122 sbcreug 3123 sbcel12g 3152 sbceqg 3153 cbvreucsf 3201 cbvrabcsf 3202 csbifg 3691 cbviota 4345 csbiotag 4372 cbvopab1 4633 cbvopab1s 4635 csbopabg 4638 opelopabsb 4698 opeliunxp 4821 cbvmpt 5677 |
Copyright terms: Public domain | W3C validator |