| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbi2 | GIF version | ||
| Description: Introduction of implication into substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbi2 | ⊢ (([y / x]φ → [y / x]ψ) → [y / x](φ → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbn 2062 | . . 3 ⊢ ([y / x] ¬ φ ↔ ¬ [y / x]φ) | |
| 2 | pm2.21 100 | . . . 4 ⊢ (¬ φ → (φ → ψ)) | |
| 3 | 2 | sbimi 1652 | . . 3 ⊢ ([y / x] ¬ φ → [y / x](φ → ψ)) |
| 4 | 1, 3 | sylbir 204 | . 2 ⊢ (¬ [y / x]φ → [y / x](φ → ψ)) |
| 5 | ax-1 6 | . . 3 ⊢ (ψ → (φ → ψ)) | |
| 6 | 5 | sbimi 1652 | . 2 ⊢ ([y / x]ψ → [y / x](φ → ψ)) |
| 7 | 4, 6 | ja 153 | 1 ⊢ (([y / x]φ → [y / x]ψ) → [y / x](φ → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: sbim 2065 |
| Copyright terms: Public domain | W3C validator |