New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbid | GIF version |
Description: Analog of sbid 1922 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbid | ⊢ [x / x]A = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3138 | . 2 ⊢ [x / x]A = {y ∣ [̣x / x]̣y ∈ A} | |
2 | sbsbc 3051 | . . . 4 ⊢ ([x / x]y ∈ A ↔ [̣x / x]̣y ∈ A) | |
3 | sbid 1922 | . . . 4 ⊢ ([x / x]y ∈ A ↔ y ∈ A) | |
4 | 2, 3 | bitr3i 242 | . . 3 ⊢ ([̣x / x]̣y ∈ A ↔ y ∈ A) |
5 | 4 | abbii 2466 | . 2 ⊢ {y ∣ [̣x / x]̣y ∈ A} = {y ∣ y ∈ A} |
6 | abid2 2471 | . 2 ⊢ {y ∣ y ∈ A} = A | |
7 | 1, 5, 6 | 3eqtri 2377 | 1 ⊢ [x / x]A = A |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 [wsb 1648 ∈ wcel 1710 {cab 2339 [̣wsbc 3047 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: csbeq1a 3145 fvmpt2i 5704 |
Copyright terms: Public domain | W3C validator |