| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sblim | GIF version | ||
| Description: Substitution with a variable not free in consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sblim.1 | ⊢ Ⅎxψ |
| Ref | Expression |
|---|---|
| sblim | ⊢ ([y / x](φ → ψ) ↔ ([y / x]φ → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbim 2065 | . 2 ⊢ ([y / x](φ → ψ) ↔ ([y / x]φ → [y / x]ψ)) | |
| 2 | sblim.1 | . . . 4 ⊢ Ⅎxψ | |
| 3 | 2 | sbf 2026 | . . 3 ⊢ ([y / x]ψ ↔ ψ) |
| 4 | 3 | imbi2i 303 | . 2 ⊢ (([y / x]φ → [y / x]ψ) ↔ ([y / x]φ → ψ)) |
| 5 | 1, 4 | bitri 240 | 1 ⊢ ([y / x](φ → ψ) ↔ ([y / x]φ → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 Ⅎwnf 1544 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: sbnf2 2108 sbmo 2234 |
| Copyright terms: Public domain | W3C validator |