New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 0lt1c | GIF version |
Description: Cardinal one is strictly greater than cardinal zero. (Contributed by Scott Fenton, 1-Aug-2019.) |
Ref | Expression |
---|---|
0lt1c | ⊢ 0c <c 1c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df0c2 6138 | . . . 4 ⊢ 0c = Nc ∅ | |
2 | 0ss 3580 | . . . . 5 ⊢ ∅ ⊆ {x} | |
3 | 0ex 4111 | . . . . . 6 ⊢ ∅ ∈ V | |
4 | snex 4112 | . . . . . 6 ⊢ {x} ∈ V | |
5 | 3, 4 | nclec 6196 | . . . . 5 ⊢ (∅ ⊆ {x} → Nc ∅ ≤c Nc {x}) |
6 | 2, 5 | ax-mp 5 | . . . 4 ⊢ Nc ∅ ≤c Nc {x} |
7 | 1, 6 | eqbrtri 4659 | . . 3 ⊢ 0c ≤c Nc {x} |
8 | vex 2863 | . . . . . . 7 ⊢ x ∈ V | |
9 | 8 | snnz 3835 | . . . . . 6 ⊢ {x} ≠ ∅ |
10 | df-ne 2519 | . . . . . 6 ⊢ ({x} ≠ ∅ ↔ ¬ {x} = ∅) | |
11 | 9, 10 | mpbi 199 | . . . . 5 ⊢ ¬ {x} = ∅ |
12 | 4 | ncid 6124 | . . . . . . 7 ⊢ {x} ∈ Nc {x} |
13 | eleq2 2414 | . . . . . . 7 ⊢ (0c = Nc {x} → ({x} ∈ 0c ↔ {x} ∈ Nc {x})) | |
14 | 12, 13 | mpbiri 224 | . . . . . 6 ⊢ (0c = Nc {x} → {x} ∈ 0c) |
15 | el0c 4422 | . . . . . 6 ⊢ ({x} ∈ 0c ↔ {x} = ∅) | |
16 | 14, 15 | sylib 188 | . . . . 5 ⊢ (0c = Nc {x} → {x} = ∅) |
17 | 11, 16 | mto 167 | . . . 4 ⊢ ¬ 0c = Nc {x} |
18 | df-ne 2519 | . . . 4 ⊢ (0c ≠ Nc {x} ↔ ¬ 0c = Nc {x}) | |
19 | 17, 18 | mpbir 200 | . . 3 ⊢ 0c ≠ Nc {x} |
20 | brltc 6115 | . . 3 ⊢ (0c <c Nc {x} ↔ (0c ≤c Nc {x} ∧ 0c ≠ Nc {x})) | |
21 | 7, 19, 20 | mpbir2an 886 | . 2 ⊢ 0c <c Nc {x} |
22 | 8 | df1c3 6141 | . 2 ⊢ 1c = Nc {x} |
23 | 21, 22 | breqtrri 4665 | 1 ⊢ 0c <c 1c |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ⊆ wss 3258 ∅c0 3551 {csn 3738 1cc1c 4135 0cc0c 4375 class class class wbr 4640 ≤c clec 6090 <c cltc 6091 Nc cnc 6092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-lec 6100 df-ltc 6101 df-nc 6102 |
This theorem is referenced by: nmembers1lem2 6270 |
Copyright terms: Public domain | W3C validator |