New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dvelimf | GIF version |
Description: Version of dvelimv 1939 without any variable restrictions. (Contributed by NM, 1-Oct-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
dvelimf.1 | ⊢ Ⅎxφ |
dvelimf.2 | ⊢ Ⅎzψ |
dvelimf.3 | ⊢ (z = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
dvelimf | ⊢ (¬ ∀x x = y → Ⅎxψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvelimf.2 | . . . 4 ⊢ Ⅎzψ | |
2 | dvelimf.3 | . . . 4 ⊢ (z = y → (φ ↔ ψ)) | |
3 | 1, 2 | equsal 1960 | . . 3 ⊢ (∀z(z = y → φ) ↔ ψ) |
4 | 3 | bicomi 193 | . 2 ⊢ (ψ ↔ ∀z(z = y → φ)) |
5 | nfnae 1956 | . . 3 ⊢ Ⅎz ¬ ∀x x = y | |
6 | nfnae 1956 | . . . . . 6 ⊢ Ⅎx ¬ ∀x x = y | |
7 | nfnae 1956 | . . . . . 6 ⊢ Ⅎx ¬ ∀x x = z | |
8 | 6, 7 | nfan 1824 | . . . . 5 ⊢ Ⅎx(¬ ∀x x = y ∧ ¬ ∀x x = z) |
9 | ax12o 1934 | . . . . . 6 ⊢ (¬ ∀x x = z → (¬ ∀x x = y → (z = y → ∀x z = y))) | |
10 | 9 | impcom 419 | . . . . 5 ⊢ ((¬ ∀x x = y ∧ ¬ ∀x x = z) → (z = y → ∀x z = y)) |
11 | 8, 10 | nfd 1766 | . . . 4 ⊢ ((¬ ∀x x = y ∧ ¬ ∀x x = z) → Ⅎx z = y) |
12 | dvelimf.1 | . . . . 5 ⊢ Ⅎxφ | |
13 | 12 | a1i 10 | . . . 4 ⊢ ((¬ ∀x x = y ∧ ¬ ∀x x = z) → Ⅎxφ) |
14 | 11, 13 | nfimd 1808 | . . 3 ⊢ ((¬ ∀x x = y ∧ ¬ ∀x x = z) → Ⅎx(z = y → φ)) |
15 | 5, 14 | nfald2 1972 | . 2 ⊢ (¬ ∀x x = y → Ⅎx∀z(z = y → φ)) |
16 | 4, 15 | nfxfrd 1571 | 1 ⊢ (¬ ∀x x = y → Ⅎxψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: dvelimnf 2017 |
Copyright terms: Public domain | W3C validator |