New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abssi | GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
abssi.1 | ⊢ (φ → x ∈ A) |
Ref | Expression |
---|---|
abssi | ⊢ {x ∣ φ} ⊆ A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssi.1 | . . 3 ⊢ (φ → x ∈ A) | |
2 | 1 | ss2abi 3339 | . 2 ⊢ {x ∣ φ} ⊆ {x ∣ x ∈ A} |
3 | abid2 2471 | . 2 ⊢ {x ∣ x ∈ A} = A | |
4 | 2, 3 | sseqtri 3304 | 1 ⊢ {x ∣ φ} ⊆ A |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 {cab 2339 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: ssab2 3351 abf 3585 intab 3957 opkabssvvk 4209 fvclss 5463 mapsspw 6023 spacssnc 6285 |
Copyright terms: Public domain | W3C validator |