New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssel | GIF version |
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssel | ⊢ (A ⊆ B → (C ∈ A → C ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3263 | . . . . . 6 ⊢ (A ⊆ B ↔ ∀x(x ∈ A → x ∈ B)) | |
2 | 1 | biimpi 186 | . . . . 5 ⊢ (A ⊆ B → ∀x(x ∈ A → x ∈ B)) |
3 | 2 | 19.21bi 1758 | . . . 4 ⊢ (A ⊆ B → (x ∈ A → x ∈ B)) |
4 | 3 | anim2d 548 | . . 3 ⊢ (A ⊆ B → ((x = C ∧ x ∈ A) → (x = C ∧ x ∈ B))) |
5 | 4 | eximdv 1622 | . 2 ⊢ (A ⊆ B → (∃x(x = C ∧ x ∈ A) → ∃x(x = C ∧ x ∈ B))) |
6 | df-clel 2349 | . 2 ⊢ (C ∈ A ↔ ∃x(x = C ∧ x ∈ A)) | |
7 | df-clel 2349 | . 2 ⊢ (C ∈ B ↔ ∃x(x = C ∧ x ∈ B)) | |
8 | 5, 6, 7 | 3imtr4g 261 | 1 ⊢ (A ⊆ B → (C ∈ A → C ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: ssel2 3269 sseli 3270 sseld 3273 sstr2 3280 ssralv 3331 ssrexv 3332 ralss 3333 rexss 3334 ssconb 3400 sscon 3401 ssdif 3402 unss1 3433 ssrin 3481 difin2 3517 reuss2 3536 reupick 3540 sssn 3865 uniss 3913 ss2iun 3985 ssiun 4009 iinss 4018 ssofss 4077 unipw 4118 sspwb 4119 pwadjoin 4120 eqpw1uni 4331 ssopab2b 4714 ssrel 4845 xpss12 4856 cnvss 4886 dmss 4907 dmcosseq 4974 ssreseq 4998 iss 5001 resopab2 5002 ssrnres 5060 dfco2a 5082 cores 5085 funssres 5145 fununi 5161 funimass3 5405 funfvima2 5461 f1elima 5475 resoprab2 5583 clos1conn 5880 |
Copyright terms: Public domain | W3C validator |