NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sseldd GIF version

Theorem sseldd 3274
Description: Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004.)
Hypotheses
Ref Expression
sseld.1 (φA B)
sseldd.2 (φC A)
Assertion
Ref Expression
sseldd (φC B)

Proof of Theorem sseldd
StepHypRef Expression
1 sseldd.2 . 2 (φC A)
2 sseld.1 . . 3 (φA B)
32sseld 3272 . 2 (φ → (C AC B))
41, 3mpd 14 1 (φC B)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710   wss 3257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259
This theorem is referenced by:  reiotacl  4364  tfinnn  4534  nchoicelem6  6294  frecsuc  6322
  Copyright terms: Public domain W3C validator