NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssres2 GIF version

Theorem ssres2 4992
Description: Subclass theorem for restriction. (The proof was shortened by Andrew Salmon, 27-Aug-2011.) (Contributed by set.mm contributors, 22-Mar-1998.) (Revised by set.mm contributors, 27-Aug-2011.)
Assertion
Ref Expression
ssres2 (A B → (C A) (C B))

Proof of Theorem ssres2
StepHypRef Expression
1 xpss1 4857 . . 3 (A B → (A × V) (B × V))
2 sslin 3482 . . 3 ((A × V) (B × V) → (C ∩ (A × V)) (C ∩ (B × V)))
31, 2syl 15 . 2 (A B → (C ∩ (A × V)) (C ∩ (B × V)))
4 df-res 4789 . 2 (C A) = (C ∩ (A × V))
5 df-res 4789 . 2 (C B) = (C ∩ (B × V))
63, 4, 53sstr4g 3313 1 (A B → (C A) (C B))
Colors of variables: wff setvar class
Syntax hints:  wi 4  Vcvv 2860  cin 3209   wss 3258   × cxp 4771   cres 4775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-opab 4624  df-xp 4785  df-res 4789
This theorem is referenced by:  imass2  5025
  Copyright terms: Public domain W3C validator