New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3sstr4g | GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4g.1 | ⊢ (φ → A ⊆ B) |
3sstr4g.2 | ⊢ C = A |
3sstr4g.3 | ⊢ D = B |
Ref | Expression |
---|---|
3sstr4g | ⊢ (φ → C ⊆ D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4g.1 | . 2 ⊢ (φ → A ⊆ B) | |
2 | 3sstr4g.2 | . . 3 ⊢ C = A | |
3 | 3sstr4g.3 | . . 3 ⊢ D = B | |
4 | 2, 3 | sseq12i 3298 | . 2 ⊢ (C ⊆ D ↔ A ⊆ B) |
5 | 1, 4 | sylibr 203 | 1 ⊢ (φ → C ⊆ D) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: rabss2 3350 unss2 3435 sslin 3482 pw1ss 4170 ssopab2 4713 xpss12 4856 coss1 4873 coss2 4874 cnvss 4886 rnss 4960 ssres 4991 ssres2 4992 imass1 5024 imass2 5025 mapss 6028 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |