NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssun GIF version

Theorem ssun 3443
Description: A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
ssun ((A B A C) → A (BC))

Proof of Theorem ssun
StepHypRef Expression
1 ssun3 3429 . 2 (A BA (BC))
2 ssun4 3430 . 2 (A CA (BC))
31, 2jaoi 368 1 ((A B A C) → A (BC))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357  cun 3208   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-ss 3260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator