New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssun4 | GIF version |
Description: Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
ssun4 | ⊢ (A ⊆ B → A ⊆ (C ∪ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3428 | . 2 ⊢ B ⊆ (C ∪ B) | |
2 | sstr2 3280 | . 2 ⊢ (A ⊆ B → (B ⊆ (C ∪ B) → A ⊆ (C ∪ B))) | |
3 | 1, 2 | mpi 16 | 1 ⊢ (A ⊆ B → A ⊆ (C ∪ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∪ cun 3208 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-ss 3260 |
This theorem is referenced by: ssun 3443 |
Copyright terms: Public domain | W3C validator |