New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl56 | GIF version |
Description: Combine syl5 28 and syl6 29. (Contributed by NM, 14-Nov-2013.) |
Ref | Expression |
---|---|
syl56.1 | ⊢ (φ → ψ) |
syl56.2 | ⊢ (χ → (ψ → θ)) |
syl56.3 | ⊢ (θ → τ) |
Ref | Expression |
---|---|
syl56 | ⊢ (χ → (φ → τ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl56.1 | . 2 ⊢ (φ → ψ) | |
2 | syl56.2 | . . 3 ⊢ (χ → (ψ → θ)) | |
3 | syl56.3 | . . 3 ⊢ (θ → τ) | |
4 | 2, 3 | syl6 29 | . 2 ⊢ (χ → (ψ → τ)) |
5 | 1, 4 | syl5 28 | 1 ⊢ (χ → (φ → τ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: spfw 1691 spw 1694 dvelimhw 1849 dvelimv 1939 ax10 1944 cbv2h 1980 euind 3024 reuind 3040 cores 5085 nchoicelem9 6298 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |