New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl6eleq | GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl6eleq.1 | ⊢ (φ → A ∈ B) |
syl6eleq.2 | ⊢ B = C |
Ref | Expression |
---|---|
syl6eleq | ⊢ (φ → A ∈ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eleq.1 | . 2 ⊢ (φ → A ∈ B) | |
2 | syl6eleq.2 | . . 3 ⊢ B = C | |
3 | 2 | a1i 10 | . 2 ⊢ (φ → B = C) |
4 | 1, 3 | eleqtrd 2429 | 1 ⊢ (φ → A ∈ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: syl6eleqr 2444 prid2g 3826 sfinltfin 4535 vinf 4555 ndmfvrcl 5350 enmap2lem3 6065 enmap1lem3 6071 enprmaplem3 6078 enprmaplem5 6080 enprmaplem6 6081 eqncg 6126 ncseqnc 6128 |
Copyright terms: Public domain | W3C validator |