| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > syl6eleq | GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) | 
| Ref | Expression | 
|---|---|
| syl6eleq.1 | ⊢ (φ → A ∈ B) | 
| syl6eleq.2 | ⊢ B = C | 
| Ref | Expression | 
|---|---|
| syl6eleq | ⊢ (φ → A ∈ C) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl6eleq.1 | . 2 ⊢ (φ → A ∈ B) | |
| 2 | syl6eleq.2 | . . 3 ⊢ B = C | |
| 3 | 2 | a1i 10 | . 2 ⊢ (φ → B = C) | 
| 4 | 1, 3 | eleqtrd 2429 | 1 ⊢ (φ → A ∈ C) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 | 
| This theorem is referenced by: syl6eleqr 2444 prid2g 3827 sfinltfin 4536 vinf 4556 ndmfvrcl 5351 enmap2lem3 6066 enmap1lem3 6072 enprmaplem3 6079 enprmaplem5 6081 enprmaplem6 6082 eqncg 6127 ncseqnc 6129 | 
| Copyright terms: Public domain | W3C validator |