NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl6reqr GIF version

Theorem syl6reqr 2404
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
syl6reqr.1 (φA = B)
syl6reqr.2 C = B
Assertion
Ref Expression
syl6reqr (φC = A)

Proof of Theorem syl6reqr
StepHypRef Expression
1 syl6reqr.1 . 2 (φA = B)
2 syl6reqr.2 . . 3 C = B
32eqcomi 2357 . 2 B = C
41, 3syl6req 2402 1 (φC = A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346
This theorem is referenced by:  iftrue  3669  iffalse  3670  difprsn1  3848  funimacnv  5169  dfimafn  5367  fniinfv  5373  fvco2  5383  fniunfv  5467  isoini  5498  dmmptg  5685  nchoicelem14  6303
  Copyright terms: Public domain W3C validator