| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > syl6reqr | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| syl6reqr.1 | ⊢ (φ → A = B) |
| syl6reqr.2 | ⊢ C = B |
| Ref | Expression |
|---|---|
| syl6reqr | ⊢ (φ → C = A) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6reqr.1 | . 2 ⊢ (φ → A = B) | |
| 2 | syl6reqr.2 | . . 3 ⊢ C = B | |
| 3 | 2 | eqcomi 2357 | . 2 ⊢ B = C |
| 4 | 1, 3 | syl6req 2402 | 1 ⊢ (φ → C = A) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
| This theorem is referenced by: iftrue 3669 iffalse 3670 difprsn1 3848 funimacnv 5169 dfimafn 5367 fniinfv 5373 fvco2 5383 fniunfv 5467 isoini 5498 dmmptg 5685 nchoicelem14 6303 |
| Copyright terms: Public domain | W3C validator |