New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fvco2 | GIF version |
Description: Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (The proof was shortened by Andrew Salmon, 22-Oct-2011.) (Contributed by set.mm contributors, 9-Oct-2004.) (Revised by set.mm contributors, 22-Oct-2011.) |
Ref | Expression |
---|---|
fvco2 | ⊢ ((G Fn A ∧ C ∈ A) → ((F ∘ G) ‘C) = (F ‘(G ‘C))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnsnfv 5373 | . . . . . . 7 ⊢ ((G Fn A ∧ C ∈ A) → {(G ‘C)} = (G “ {C})) | |
2 | 1 | imaeq2d 4942 | . . . . . 6 ⊢ ((G Fn A ∧ C ∈ A) → (F “ {(G ‘C)}) = (F “ (G “ {C}))) |
3 | imaco 5086 | . . . . . 6 ⊢ ((F ∘ G) “ {C}) = (F “ (G “ {C})) | |
4 | 2, 3 | syl6reqr 2404 | . . . . 5 ⊢ ((G Fn A ∧ C ∈ A) → ((F ∘ G) “ {C}) = (F “ {(G ‘C)})) |
5 | 4 | eqeq1d 2361 | . . . 4 ⊢ ((G Fn A ∧ C ∈ A) → (((F ∘ G) “ {C}) = {y} ↔ (F “ {(G ‘C)}) = {y})) |
6 | 5 | abbidv 2467 | . . 3 ⊢ ((G Fn A ∧ C ∈ A) → {y ∣ ((F ∘ G) “ {C}) = {y}} = {y ∣ (F “ {(G ‘C)}) = {y}}) |
7 | 6 | unieqd 3902 | . 2 ⊢ ((G Fn A ∧ C ∈ A) → ∪{y ∣ ((F ∘ G) “ {C}) = {y}} = ∪{y ∣ (F “ {(G ‘C)}) = {y}}) |
8 | df-iota 4339 | . . 3 ⊢ (℩zC(F ∘ G)z) = ∪{y ∣ {z ∣ C(F ∘ G)z} = {y}} | |
9 | df-fv 4795 | . . 3 ⊢ ((F ∘ G) ‘C) = (℩zC(F ∘ G)z) | |
10 | imasn 5018 | . . . . . 6 ⊢ ((F ∘ G) “ {C}) = {z ∣ C(F ∘ G)z} | |
11 | 10 | eqeq1i 2360 | . . . . 5 ⊢ (((F ∘ G) “ {C}) = {y} ↔ {z ∣ C(F ∘ G)z} = {y}) |
12 | 11 | abbii 2465 | . . . 4 ⊢ {y ∣ ((F ∘ G) “ {C}) = {y}} = {y ∣ {z ∣ C(F ∘ G)z} = {y}} |
13 | 12 | unieqi 3901 | . . 3 ⊢ ∪{y ∣ ((F ∘ G) “ {C}) = {y}} = ∪{y ∣ {z ∣ C(F ∘ G)z} = {y}} |
14 | 8, 9, 13 | 3eqtr4i 2383 | . 2 ⊢ ((F ∘ G) ‘C) = ∪{y ∣ ((F ∘ G) “ {C}) = {y}} |
15 | df-iota 4339 | . . 3 ⊢ (℩z(G ‘C)Fz) = ∪{y ∣ {z ∣ (G ‘C)Fz} = {y}} | |
16 | df-fv 4795 | . . 3 ⊢ (F ‘(G ‘C)) = (℩z(G ‘C)Fz) | |
17 | imasn 5018 | . . . . . 6 ⊢ (F “ {(G ‘C)}) = {z ∣ (G ‘C)Fz} | |
18 | 17 | eqeq1i 2360 | . . . . 5 ⊢ ((F “ {(G ‘C)}) = {y} ↔ {z ∣ (G ‘C)Fz} = {y}) |
19 | 18 | abbii 2465 | . . . 4 ⊢ {y ∣ (F “ {(G ‘C)}) = {y}} = {y ∣ {z ∣ (G ‘C)Fz} = {y}} |
20 | 19 | unieqi 3901 | . . 3 ⊢ ∪{y ∣ (F “ {(G ‘C)}) = {y}} = ∪{y ∣ {z ∣ (G ‘C)Fz} = {y}} |
21 | 15, 16, 20 | 3eqtr4i 2383 | . 2 ⊢ (F ‘(G ‘C)) = ∪{y ∣ (F “ {(G ‘C)}) = {y}} |
22 | 7, 14, 21 | 3eqtr4g 2410 | 1 ⊢ ((G Fn A ∧ C ∈ A) → ((F ∘ G) ‘C) = (F ‘(G ‘C))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 {csn 3737 ∪cuni 3891 ℩cio 4337 class class class wbr 4639 ∘ ccom 4721 “ cima 4722 Fn wfn 4776 ‘cfv 4781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-fv 4795 |
This theorem is referenced by: fvco 5383 fvco3 5384 |
Copyright terms: Public domain | W3C validator |