New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl6eqr | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6eqr.1 | ⊢ (φ → A = B) |
syl6eqr.2 | ⊢ C = B |
Ref | Expression |
---|---|
syl6eqr | ⊢ (φ → A = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eqr.1 | . 2 ⊢ (φ → A = B) | |
2 | syl6eqr.2 | . . 3 ⊢ C = B | |
3 | 2 | eqcomi 2357 | . 2 ⊢ B = C |
4 | 1, 3 | syl6eq 2401 | 1 ⊢ (φ → A = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: 3eqtr4g 2410 iinrab2 4029 setswith 4321 pw1equn 4331 uniabio 4349 iotanul 4354 nnsucelrlem3 4426 ltfintr 4459 lefinlteq 4463 sfinltfin 4535 1cvsfin 4542 tncveqnc1fin 4544 phialllem1 4616 phialllem2 4617 dfimafn2 5367 fnasrn 5417 ffnov 5587 fnov 5591 fnrnov 5605 foov 5606 funimassov 5609 ovelimab 5610 fce 6188 ce0 6190 el2c 6191 nc0le1 6216 nclenn 6249 ncslesuc 6267 nchoicelem9 6297 |
Copyright terms: Public domain | W3C validator |