New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl6eqr | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6eqr.1 | ⊢ (φ → A = B) |
syl6eqr.2 | ⊢ C = B |
Ref | Expression |
---|---|
syl6eqr | ⊢ (φ → A = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eqr.1 | . 2 ⊢ (φ → A = B) | |
2 | syl6eqr.2 | . . 3 ⊢ C = B | |
3 | 2 | eqcomi 2357 | . 2 ⊢ B = C |
4 | 1, 3 | syl6eq 2401 | 1 ⊢ (φ → A = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: 3eqtr4g 2410 iinrab2 4030 setswith 4322 pw1equn 4332 uniabio 4350 iotanul 4355 nnsucelrlem3 4427 ltfintr 4460 lefinlteq 4464 sfinltfin 4536 1cvsfin 4543 tncveqnc1fin 4545 phialllem1 4617 phialllem2 4618 dfimafn2 5368 fnasrn 5418 ffnov 5588 fnov 5592 fnrnov 5606 foov 5607 funimassov 5610 ovelimab 5611 fce 6189 ce0 6191 el2c 6192 nc0le1 6217 nclenn 6250 ncslesuc 6268 nchoicelem9 6298 |
Copyright terms: Public domain | W3C validator |