New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > difprsn1 | GIF version |
Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
Ref | Expression |
---|---|
difprsn1 | ⊢ (A ≠ B → ({A, B} ∖ {A}) = {B}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necom 2598 | . 2 ⊢ (B ≠ A ↔ A ≠ B) | |
2 | disjsn2 3788 | . . . 4 ⊢ (B ≠ A → ({B} ∩ {A}) = ∅) | |
3 | disj3 3596 | . . . 4 ⊢ (({B} ∩ {A}) = ∅ ↔ {B} = ({B} ∖ {A})) | |
4 | 2, 3 | sylib 188 | . . 3 ⊢ (B ≠ A → {B} = ({B} ∖ {A})) |
5 | df-pr 3743 | . . . . . 6 ⊢ {A, B} = ({A} ∪ {B}) | |
6 | 5 | equncomi 3411 | . . . . 5 ⊢ {A, B} = ({B} ∪ {A}) |
7 | 6 | difeq1i 3382 | . . . 4 ⊢ ({A, B} ∖ {A}) = (({B} ∪ {A}) ∖ {A}) |
8 | difun2 3630 | . . . 4 ⊢ (({B} ∪ {A}) ∖ {A}) = ({B} ∖ {A}) | |
9 | 7, 8 | eqtri 2373 | . . 3 ⊢ ({A, B} ∖ {A}) = ({B} ∖ {A}) |
10 | 4, 9 | syl6reqr 2404 | . 2 ⊢ (B ≠ A → ({A, B} ∖ {A}) = {B}) |
11 | 1, 10 | sylbir 204 | 1 ⊢ (A ≠ B → ({A, B} ∖ {A}) = {B}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ≠ wne 2517 ∖ cdif 3207 ∪ cun 3208 ∩ cin 3209 ∅c0 3551 {csn 3738 {cpr 3739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 |
This theorem is referenced by: difprsn2 3849 |
Copyright terms: Public domain | W3C validator |