NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbied2 GIF version

Theorem csbied2 3179
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
csbied2.1 (φA V)
csbied2.2 (φA = B)
csbied2.3 ((φ x = B) → C = D)
Assertion
Ref Expression
csbied2 (φ[A / x]C = D)
Distinct variable groups:   x,A   φ,x   x,D
Allowed substitution hints:   B(x)   C(x)   V(x)

Proof of Theorem csbied2
StepHypRef Expression
1 csbied2.1 . 2 (φA V)
2 id 19 . . . 4 (x = Ax = A)
3 csbied2.2 . . . 4 (φA = B)
42, 3sylan9eqr 2407 . . 3 ((φ x = A) → x = B)
5 csbied2.3 . . 3 ((φ x = B) → C = D)
64, 5syldan 456 . 2 ((φ x = A) → C = D)
71, 6csbied 3178 1 (φ[A / x]C = D)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wcel 1710  [csb 3136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-sbc 3047  df-csb 3137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator