New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > lefinaddc | GIF version |
Description: Cardinal sum always yields a larger set. (Contributed by SF, 27-Jan-2015.) |
Ref | Expression |
---|---|
lefinaddc | ⊢ ((A ∈ V ∧ N ∈ Nn ) → ⟪A, (A +c N)⟫ ∈ ≤fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2353 | . . . 4 ⊢ (A +c N) = (A +c N) | |
2 | addceq2 4385 | . . . . . 6 ⊢ (n = N → (A +c n) = (A +c N)) | |
3 | 2 | eqeq2d 2364 | . . . . 5 ⊢ (n = N → ((A +c N) = (A +c n) ↔ (A +c N) = (A +c N))) |
4 | 3 | rspcev 2956 | . . . 4 ⊢ ((N ∈ Nn ∧ (A +c N) = (A +c N)) → ∃n ∈ Nn (A +c N) = (A +c n)) |
5 | 1, 4 | mpan2 652 | . . 3 ⊢ (N ∈ Nn → ∃n ∈ Nn (A +c N) = (A +c n)) |
6 | 5 | adantl 452 | . 2 ⊢ ((A ∈ V ∧ N ∈ Nn ) → ∃n ∈ Nn (A +c N) = (A +c n)) |
7 | addcexg 4394 | . . 3 ⊢ ((A ∈ V ∧ N ∈ Nn ) → (A +c N) ∈ V) | |
8 | opklefing 4449 | . . 3 ⊢ ((A ∈ V ∧ (A +c N) ∈ V) → (⟪A, (A +c N)⟫ ∈ ≤fin ↔ ∃n ∈ Nn (A +c N) = (A +c n))) | |
9 | 7, 8 | syldan 456 | . 2 ⊢ ((A ∈ V ∧ N ∈ Nn ) → (⟪A, (A +c N)⟫ ∈ ≤fin ↔ ∃n ∈ Nn (A +c N) = (A +c n))) |
10 | 6, 9 | mpbird 223 | 1 ⊢ ((A ∈ V ∧ N ∈ Nn ) → ⟪A, (A +c N)⟫ ∈ ≤fin ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 Vcvv 2860 ⟪copk 4058 Nn cnnc 4374 +c cplc 4376 ≤fin clefin 4433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-p6 4192 df-sik 4193 df-ssetk 4194 df-addc 4379 df-lefin 4441 |
This theorem is referenced by: 0cminle 4462 vfintle 4547 vfin1cltv 4548 |
Copyright terms: Public domain | W3C validator |