New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpcom | GIF version |
Description: Modus ponens inference with commutation of antecedents. (Contributed by NM, 17-Mar-1996.) |
Ref | Expression |
---|---|
mpcom.1 | ⊢ (ψ → φ) |
mpcom.2 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
mpcom | ⊢ (ψ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpcom.1 | . 2 ⊢ (ψ → φ) | |
2 | mpcom.2 | . . 3 ⊢ (φ → (ψ → χ)) | |
3 | 2 | com12 27 | . 2 ⊢ (ψ → (φ → χ)) |
4 | 1, 3 | mpd 14 | 1 ⊢ (ψ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syldan 456 ax16i 2046 ceqex 2970 unsneqsn 3888 sfintfin 4533 0cnelphi 4598 vtoclr 4817 opeldm 4911 tz6.12-1 5345 tz6.12c 5348 fununiq 5518 oprabid 5551 eloprabga 5579 ndmovordi 5622 clos1conn 5880 enmap2lem3 6066 enmap2 6069 enmap1lem3 6072 enpw 6088 ce0nnuli 6179 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |