NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reupick2 GIF version

Theorem reupick2 3542
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reupick2 (((x A (ψφ) x A ψ ∃!x A φ) x A) → (φψ))
Distinct variable group:   x,A
Allowed substitution hints:   φ(x)   ψ(x)

Proof of Theorem reupick2
StepHypRef Expression
1 ancr 532 . . . . . 6 ((ψφ) → (ψ → (φ ψ)))
21ralimi 2690 . . . . 5 (x A (ψφ) → x A (ψ → (φ ψ)))
3 rexim 2719 . . . . 5 (x A (ψ → (φ ψ)) → (x A ψx A (φ ψ)))
42, 3syl 15 . . . 4 (x A (ψφ) → (x A ψx A (φ ψ)))
5 reupick3 3541 . . . . . 6 ((∃!x A φ x A (φ ψ) x A) → (φψ))
653exp 1150 . . . . 5 (∃!x A φ → (x A (φ ψ) → (x A → (φψ))))
76com12 27 . . . 4 (x A (φ ψ) → (∃!x A φ → (x A → (φψ))))
84, 7syl6 29 . . 3 (x A (ψφ) → (x A ψ → (∃!x A φ → (x A → (φψ)))))
983imp1 1164 . 2 (((x A (ψφ) x A ψ ∃!x A φ) x A) → (φψ))
10 rsp 2675 . . . 4 (x A (ψφ) → (x A → (ψφ)))
11103ad2ant1 976 . . 3 ((x A (ψφ) x A ψ ∃!x A φ) → (x A → (ψφ)))
1211imp 418 . 2 (((x A (ψφ) x A ψ ∃!x A φ) x A) → (ψφ))
139, 12impbid 183 1 (((x A (ψφ) x A ψ ∃!x A φ) x A) → (φψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   w3a 934   wcel 1710  wral 2615  wrex 2616  ∃!wreu 2617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-ral 2620  df-rex 2621  df-reu 2622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator