![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > reupick2 | GIF version |
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
Ref | Expression |
---|---|
reupick2 | ⊢ (((∀x ∈ A (ψ → φ) ∧ ∃x ∈ A ψ ∧ ∃!x ∈ A φ) ∧ x ∈ A) → (φ ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancr 532 | . . . . . 6 ⊢ ((ψ → φ) → (ψ → (φ ∧ ψ))) | |
2 | 1 | ralimi 2690 | . . . . 5 ⊢ (∀x ∈ A (ψ → φ) → ∀x ∈ A (ψ → (φ ∧ ψ))) |
3 | rexim 2719 | . . . . 5 ⊢ (∀x ∈ A (ψ → (φ ∧ ψ)) → (∃x ∈ A ψ → ∃x ∈ A (φ ∧ ψ))) | |
4 | 2, 3 | syl 15 | . . . 4 ⊢ (∀x ∈ A (ψ → φ) → (∃x ∈ A ψ → ∃x ∈ A (φ ∧ ψ))) |
5 | reupick3 3541 | . . . . . 6 ⊢ ((∃!x ∈ A φ ∧ ∃x ∈ A (φ ∧ ψ) ∧ x ∈ A) → (φ → ψ)) | |
6 | 5 | 3exp 1150 | . . . . 5 ⊢ (∃!x ∈ A φ → (∃x ∈ A (φ ∧ ψ) → (x ∈ A → (φ → ψ)))) |
7 | 6 | com12 27 | . . . 4 ⊢ (∃x ∈ A (φ ∧ ψ) → (∃!x ∈ A φ → (x ∈ A → (φ → ψ)))) |
8 | 4, 7 | syl6 29 | . . 3 ⊢ (∀x ∈ A (ψ → φ) → (∃x ∈ A ψ → (∃!x ∈ A φ → (x ∈ A → (φ → ψ))))) |
9 | 8 | 3imp1 1164 | . 2 ⊢ (((∀x ∈ A (ψ → φ) ∧ ∃x ∈ A ψ ∧ ∃!x ∈ A φ) ∧ x ∈ A) → (φ → ψ)) |
10 | rsp 2675 | . . . 4 ⊢ (∀x ∈ A (ψ → φ) → (x ∈ A → (ψ → φ))) | |
11 | 10 | 3ad2ant1 976 | . . 3 ⊢ ((∀x ∈ A (ψ → φ) ∧ ∃x ∈ A ψ ∧ ∃!x ∈ A φ) → (x ∈ A → (ψ → φ))) |
12 | 11 | imp 418 | . 2 ⊢ (((∀x ∈ A (ψ → φ) ∧ ∃x ∈ A ψ ∧ ∃!x ∈ A φ) ∧ x ∈ A) → (ψ → φ)) |
13 | 9, 12 | impbid 183 | 1 ⊢ (((∀x ∈ A (ψ → φ) ∧ ∃x ∈ A ψ ∧ ∃!x ∈ A φ) ∧ x ∈ A) → (φ ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 ∃!wreu 2617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-ral 2620 df-rex 2621 df-reu 2622 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |