NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  undif GIF version

Theorem undif 3631
Description: Union of complementary parts into whole. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
undif (A B ↔ (A ∪ (B A)) = B)

Proof of Theorem undif
StepHypRef Expression
1 ssequn1 3434 . 2 (A B ↔ (AB) = B)
2 undif2 3627 . . 3 (A ∪ (B A)) = (AB)
32eqeq1i 2360 . 2 ((A ∪ (B A)) = B ↔ (AB) = B)
41, 3bitr4i 243 1 (A B ↔ (A ∪ (B A)) = B)
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642   cdif 3207  cun 3208   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552
This theorem is referenced by:  difsnid  3855
  Copyright terms: Public domain W3C validator