New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > difsnid | GIF version |
Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.) |
Ref | Expression |
---|---|
difsnid | ⊢ (B ∈ A → ((A ∖ {B}) ∪ {B}) = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 3409 | . 2 ⊢ ((A ∖ {B}) ∪ {B}) = ({B} ∪ (A ∖ {B})) | |
2 | snssi 3853 | . . 3 ⊢ (B ∈ A → {B} ⊆ A) | |
3 | undif 3631 | . . 3 ⊢ ({B} ⊆ A ↔ ({B} ∪ (A ∖ {B})) = A) | |
4 | 2, 3 | sylib 188 | . 2 ⊢ (B ∈ A → ({B} ∪ (A ∖ {B})) = A) |
5 | 1, 4 | syl5eq 2397 | 1 ⊢ (B ∈ A → ((A ∖ {B}) ∪ {B}) = A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 ∖ cdif 3207 ∪ cun 3208 ⊆ wss 3258 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 |
This theorem is referenced by: pwadjoin 4120 phiall 4619 |
Copyright terms: Public domain | W3C validator |