New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vtocl | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
vtocl.1 | ⊢ A ∈ V |
vtocl.2 | ⊢ (x = A → (φ ↔ ψ)) |
vtocl.3 | ⊢ φ |
Ref | Expression |
---|---|
vtocl | ⊢ ψ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
2 | vtocl.1 | . 2 ⊢ A ∈ V | |
3 | vtocl.2 | . 2 ⊢ (x = A → (φ ↔ ψ)) | |
4 | vtocl.3 | . 2 ⊢ φ | |
5 | 1, 2, 3, 4 | vtoclf 2909 | 1 ⊢ ψ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: vtoclb 2913 caovcan 5629 enprmapc 6084 |
Copyright terms: Public domain | W3C validator |