NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  enprmapc GIF version

Theorem enprmapc 6084
Description: A mapping from a two element pair onto a set is equinumerous with the power class of the set. Theorem XI.1.28 of [Rosser] p. 360. (Contributed by SF, 3-Mar-2015.)
Hypotheses
Ref Expression
enprmapc.1 A V
enprmapc.2 B V
enprmapc.3 C V
Assertion
Ref Expression
enprmapc ((AB P = {A, B}) → (Pm C) ≈ C)

Proof of Theorem enprmapc
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enprmapc.1 . 2 A V
2 neeq1 2525 . . . 4 (x = A → (xBAB))
3 preq1 3800 . . . . 5 (x = A → {x, B} = {A, B})
43eqeq2d 2364 . . . 4 (x = A → (P = {x, B} ↔ P = {A, B}))
52, 4anbi12d 691 . . 3 (x = A → ((xB P = {x, B}) ↔ (AB P = {A, B})))
65imbi1d 308 . 2 (x = A → (((xB P = {x, B}) → (Pm C) ≈ C) ↔ ((AB P = {A, B}) → (Pm C) ≈ C)))
7 enprmapc.2 . . 3 B V
8 neeq2 2526 . . . . 5 (y = B → (xyxB))
9 preq2 3801 . . . . . 6 (y = B → {x, y} = {x, B})
109eqeq2d 2364 . . . . 5 (y = B → (P = {x, y} ↔ P = {x, B}))
118, 10anbi12d 691 . . . 4 (y = B → ((xy P = {x, y}) ↔ (xB P = {x, B})))
1211imbi1d 308 . . 3 (y = B → (((xy P = {x, y}) → (Pm C) ≈ C) ↔ ((xB P = {x, B}) → (Pm C) ≈ C)))
13 enprmapc.3 . . . 4 C V
1413enprmap 6083 . . 3 ((xy P = {x, y}) → (Pm C) ≈ C)
157, 12, 14vtocl 2910 . 2 ((xB P = {x, B}) → (Pm C) ≈ C)
161, 6, 15vtocl 2910 1 ((AB P = {A, B}) → (Pm C) ≈ C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wcel 1710  wne 2517  Vcvv 2860  cpw 3723  {cpr 3739   class class class wbr 4640  (class class class)co 5526  m cmap 6000  cen 6029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-map 6002  df-en 6030
This theorem is referenced by:  enpw  6088  ce2  6193
  Copyright terms: Public domain W3C validator