New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vtoclb | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
vtoclb.1 | ⊢ A ∈ V |
vtoclb.2 | ⊢ (x = A → (φ ↔ χ)) |
vtoclb.3 | ⊢ (x = A → (ψ ↔ θ)) |
vtoclb.4 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
vtoclb | ⊢ (χ ↔ θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclb.1 | . 2 ⊢ A ∈ V | |
2 | vtoclb.2 | . . 3 ⊢ (x = A → (φ ↔ χ)) | |
3 | vtoclb.3 | . . 3 ⊢ (x = A → (ψ ↔ θ)) | |
4 | 2, 3 | bibi12d 312 | . 2 ⊢ (x = A → ((φ ↔ ψ) ↔ (χ ↔ θ))) |
5 | vtoclb.4 | . 2 ⊢ (φ ↔ ψ) | |
6 | 1, 4, 5 | vtocl 2910 | 1 ⊢ (χ ↔ θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: alexeq 2969 sbss 3660 |
Copyright terms: Public domain | W3C validator |