New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vtocl3ga | GIF version |
Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
vtocl3ga.1 | ⊢ (x = A → (φ ↔ ψ)) |
vtocl3ga.2 | ⊢ (y = B → (ψ ↔ χ)) |
vtocl3ga.3 | ⊢ (z = C → (χ ↔ θ)) |
vtocl3ga.4 | ⊢ ((x ∈ D ∧ y ∈ R ∧ z ∈ S) → φ) |
Ref | Expression |
---|---|
vtocl3ga | ⊢ ((A ∈ D ∧ B ∈ R ∧ C ∈ S) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2490 | . 2 ⊢ ℲxA | |
2 | nfcv 2490 | . 2 ⊢ ℲyA | |
3 | nfcv 2490 | . 2 ⊢ ℲzA | |
4 | nfcv 2490 | . 2 ⊢ ℲyB | |
5 | nfcv 2490 | . 2 ⊢ ℲzB | |
6 | nfcv 2490 | . 2 ⊢ ℲzC | |
7 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
8 | nfv 1619 | . 2 ⊢ Ⅎyχ | |
9 | nfv 1619 | . 2 ⊢ Ⅎzθ | |
10 | vtocl3ga.1 | . 2 ⊢ (x = A → (φ ↔ ψ)) | |
11 | vtocl3ga.2 | . 2 ⊢ (y = B → (ψ ↔ χ)) | |
12 | vtocl3ga.3 | . 2 ⊢ (z = C → (χ ↔ θ)) | |
13 | vtocl3ga.4 | . 2 ⊢ ((x ∈ D ∧ y ∈ R ∧ z ∈ S) → φ) | |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | vtocl3gaf 2924 | 1 ⊢ ((A ∈ D ∧ B ∈ R ∧ C ∈ S) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: preq12bg 4129 |
Copyright terms: Public domain | W3C validator |