New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vtocleg | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Jan-2004.) |
Ref | Expression |
---|---|
vtocleg.1 | ⊢ (x = A → φ) |
Ref | Expression |
---|---|
vtocleg | ⊢ (A ∈ V → φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2870 | . 2 ⊢ (A ∈ V → ∃x x = A) | |
2 | vtocleg.1 | . . 3 ⊢ (x = A → φ) | |
3 | 2 | exlimiv 1634 | . 2 ⊢ (∃x x = A → φ) |
4 | 1, 3 | syl 15 | 1 ⊢ (A ∈ V → φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1541 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: vtocle 2929 spsbc 3059 eloprabga 5579 |
Copyright terms: Public domain | W3C validator |