New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elisset | GIF version |
Description: An element of a class exists. (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
elisset | ⊢ (A ∈ V → ∃x x = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 ⊢ (A ∈ V → A ∈ V) | |
2 | isset 2864 | . 2 ⊢ (A ∈ V ↔ ∃x x = A) | |
3 | 1, 2 | sylib 188 | 1 ⊢ (A ∈ V → ∃x x = A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: elex22 2871 elex2 2872 ceqsalt 2882 ceqsalg 2884 cgsexg 2891 cgsex2g 2892 cgsex4g 2893 vtoclgft 2906 vtocleg 2926 vtoclegft 2927 spc2egv 2942 spc3egv 2944 tpid3g 3832 opkelcokg 4262 copsex2t 4609 copsex2g 4610 ovmpt4g 5711 ncelncs 6121 |
Copyright terms: Public domain | W3C validator |