Proof of Theorem 3vded22
| Step | Hyp | Ref
| Expression |
| 1 | | 3vded22.1 |
. . . 4
c ≤ ( C (a, b) ∪
C (c, b)) |
| 2 | | df-cmtr 134 |
. . . . . . 7
C (a, b) = (((a ∩
b) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 3 | | or4 84 |
. . . . . . 7
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a
∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ))) |
| 4 | 2, 3 | ax-r2 36 |
. . . . . 6
C (a, b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ ((a
∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ))) |
| 5 | | lear 161 |
. . . . . . . 8
(a ∩ b) ≤ b |
| 6 | | lear 161 |
. . . . . . . 8
(a⊥ ∩ b) ≤ b |
| 7 | 5, 6 | lel2or 170 |
. . . . . . 7
((a ∩ b) ∪ (a⊥ ∩ b)) ≤ b |
| 8 | | 3vded22.2 |
. . . . . . . . . 10
c ≤ a |
| 9 | 8 | lecon 154 |
. . . . . . . . 9
a⊥ ≤ c⊥ |
| 10 | 9 | leran 153 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) ≤ (c⊥ ∩ b⊥ ) |
| 11 | 10 | lelor 166 |
. . . . . . 7
((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) ≤ ((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )) |
| 12 | 7, 11 | le2or 168 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a
∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ))) ≤ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
| 13 | 4, 12 | bltr 138 |
. . . . 5
C (a, b) ≤ (b ∪
((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
| 14 | | df-cmtr 134 |
. . . . . . 7
C (c, b) = (((c ∩
b) ∪ (c ∩ b⊥ )) ∪ ((c⊥ ∩ b) ∪ (c⊥ ∩ b⊥ ))) |
| 15 | | or4 84 |
. . . . . . 7
(((c ∩ b) ∪ (c
∩ b⊥ )) ∪
((c⊥ ∩ b) ∪ (c⊥ ∩ b⊥ ))) = (((c ∩ b) ∪
(c⊥ ∩ b)) ∪ ((c
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
| 16 | 14, 15 | ax-r2 36 |
. . . . . 6
C (c, b) = (((c ∩
b) ∪ (c⊥ ∩ b)) ∪ ((c
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
| 17 | | lear 161 |
. . . . . . . 8
(c ∩ b) ≤ b |
| 18 | | lear 161 |
. . . . . . . 8
(c⊥ ∩ b) ≤ b |
| 19 | 17, 18 | lel2or 170 |
. . . . . . 7
((c ∩ b) ∪ (c⊥ ∩ b)) ≤ b |
| 20 | 8 | leran 153 |
. . . . . . . 8
(c ∩ b⊥ ) ≤ (a ∩ b⊥ ) |
| 21 | 20 | leror 152 |
. . . . . . 7
((c ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )) ≤ ((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )) |
| 22 | 19, 21 | le2or 168 |
. . . . . 6
(((c ∩ b) ∪ (c⊥ ∩ b)) ∪ ((c
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) ≤ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
| 23 | 16, 22 | bltr 138 |
. . . . 5
C (c, b) ≤ (b ∪
((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
| 24 | 13, 23 | le2or 168 |
. . . 4
( C (a, b) ∪ C (c, b)) ≤
((b ∪ ((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) ∪ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )))) |
| 25 | 1, 24 | letr 137 |
. . 3
c ≤ ((b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) ∪ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )))) |
| 26 | | df-i0 43 |
. . . . 5
((a →0 b) →0 (c →2 b)) = ((a
→0 b)⊥
∪ (c →2 b)) |
| 27 | | or12 80 |
. . . . . 6
((a ∩ b⊥ ) ∪ (b ∪ (c⊥ ∩ b⊥ ))) = (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
| 28 | | df-i0 43 |
. . . . . . . . 9
(a →0 b) = (a⊥ ∪ b) |
| 29 | 28 | ax-r4 37 |
. . . . . . . 8
(a →0 b)⊥ = (a⊥ ∪ b)⊥ |
| 30 | | anor1 88 |
. . . . . . . . 9
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
| 31 | 30 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∪ b)⊥ = (a ∩ b⊥ ) |
| 32 | 29, 31 | ax-r2 36 |
. . . . . . 7
(a →0 b)⊥ = (a ∩ b⊥ ) |
| 33 | | df-i2 45 |
. . . . . . 7
(c →2 b) = (b ∪
(c⊥ ∩ b⊥ )) |
| 34 | 32, 33 | 2or 72 |
. . . . . 6
((a →0 b)⊥ ∪ (c →2 b)) = ((a ∩
b⊥ ) ∪ (b ∪ (c⊥ ∩ b⊥ ))) |
| 35 | | oridm 110 |
. . . . . 6
((b ∪ ((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) ∪ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )))) = (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
| 36 | 27, 34, 35 | 3tr1 63 |
. . . . 5
((a →0 b)⊥ ∪ (c →2 b)) = ((b ∪
((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) ∪ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )))) |
| 37 | 26, 36 | ax-r2 36 |
. . . 4
((a →0 b) →0 (c →2 b)) = ((b ∪
((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) ∪ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )))) |
| 38 | 37 | ax-r1 35 |
. . 3
((b ∪ ((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) ∪ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )))) = ((a →0 b) →0 (c →2 b)) |
| 39 | 25, 38 | lbtr 139 |
. 2
c ≤ ((a →0 b) →0 (c →2 b)) |
| 40 | | 3vded22.3 |
. 2
c ≤ (a →0 b) |
| 41 | 39, 40 | 3vded21 817 |
1
c ≤ b |