Proof of Theorem 3vded22
Step | Hyp | Ref
| Expression |
1 | | 3vded22.1 |
. . . 4
c ≤ ( C (a, b) ∪
C (c, b)) |
2 | | df-cmtr 134 |
. . . . . . 7
C (a, b) = (((a ∩
b) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
3 | | or4 84 |
. . . . . . 7
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a
∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ))) |
4 | 2, 3 | ax-r2 36 |
. . . . . 6
C (a, b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ ((a
∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ))) |
5 | | lear 161 |
. . . . . . . 8
(a ∩ b) ≤ b |
6 | | lear 161 |
. . . . . . . 8
(a⊥ ∩ b) ≤ b |
7 | 5, 6 | lel2or 170 |
. . . . . . 7
((a ∩ b) ∪ (a⊥ ∩ b)) ≤ b |
8 | | 3vded22.2 |
. . . . . . . . . 10
c ≤ a |
9 | 8 | lecon 154 |
. . . . . . . . 9
a⊥ ≤ c⊥ |
10 | 9 | leran 153 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) ≤ (c⊥ ∩ b⊥ ) |
11 | 10 | lelor 166 |
. . . . . . 7
((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) ≤ ((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )) |
12 | 7, 11 | le2or 168 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a
∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ))) ≤ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
13 | 4, 12 | bltr 138 |
. . . . 5
C (a, b) ≤ (b ∪
((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
14 | | df-cmtr 134 |
. . . . . . 7
C (c, b) = (((c ∩
b) ∪ (c ∩ b⊥ )) ∪ ((c⊥ ∩ b) ∪ (c⊥ ∩ b⊥ ))) |
15 | | or4 84 |
. . . . . . 7
(((c ∩ b) ∪ (c
∩ b⊥ )) ∪
((c⊥ ∩ b) ∪ (c⊥ ∩ b⊥ ))) = (((c ∩ b) ∪
(c⊥ ∩ b)) ∪ ((c
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
16 | 14, 15 | ax-r2 36 |
. . . . . 6
C (c, b) = (((c ∩
b) ∪ (c⊥ ∩ b)) ∪ ((c
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
17 | | lear 161 |
. . . . . . . 8
(c ∩ b) ≤ b |
18 | | lear 161 |
. . . . . . . 8
(c⊥ ∩ b) ≤ b |
19 | 17, 18 | lel2or 170 |
. . . . . . 7
((c ∩ b) ∪ (c⊥ ∩ b)) ≤ b |
20 | 8 | leran 153 |
. . . . . . . 8
(c ∩ b⊥ ) ≤ (a ∩ b⊥ ) |
21 | 20 | leror 152 |
. . . . . . 7
((c ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )) ≤ ((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )) |
22 | 19, 21 | le2or 168 |
. . . . . 6
(((c ∩ b) ∪ (c⊥ ∩ b)) ∪ ((c
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) ≤ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
23 | 16, 22 | bltr 138 |
. . . . 5
C (c, b) ≤ (b ∪
((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
24 | 13, 23 | le2or 168 |
. . . 4
( C (a, b) ∪ C (c, b)) ≤
((b ∪ ((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) ∪ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )))) |
25 | 1, 24 | letr 137 |
. . 3
c ≤ ((b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) ∪ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )))) |
26 | | df-i0 43 |
. . . . 5
((a →0 b) →0 (c →2 b)) = ((a
→0 b)⊥
∪ (c →2 b)) |
27 | | or12 80 |
. . . . . 6
((a ∩ b⊥ ) ∪ (b ∪ (c⊥ ∩ b⊥ ))) = (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
28 | | df-i0 43 |
. . . . . . . . 9
(a →0 b) = (a⊥ ∪ b) |
29 | 28 | ax-r4 37 |
. . . . . . . 8
(a →0 b)⊥ = (a⊥ ∪ b)⊥ |
30 | | anor1 88 |
. . . . . . . . 9
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
31 | 30 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∪ b)⊥ = (a ∩ b⊥ ) |
32 | 29, 31 | ax-r2 36 |
. . . . . . 7
(a →0 b)⊥ = (a ∩ b⊥ ) |
33 | | df-i2 45 |
. . . . . . 7
(c →2 b) = (b ∪
(c⊥ ∩ b⊥ )) |
34 | 32, 33 | 2or 72 |
. . . . . 6
((a →0 b)⊥ ∪ (c →2 b)) = ((a ∩
b⊥ ) ∪ (b ∪ (c⊥ ∩ b⊥ ))) |
35 | | oridm 110 |
. . . . . 6
((b ∪ ((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) ∪ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )))) = (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) |
36 | 27, 34, 35 | 3tr1 63 |
. . . . 5
((a →0 b)⊥ ∪ (c →2 b)) = ((b ∪
((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) ∪ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )))) |
37 | 26, 36 | ax-r2 36 |
. . . 4
((a →0 b) →0 (c →2 b)) = ((b ∪
((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) ∪ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )))) |
38 | 37 | ax-r1 35 |
. . 3
((b ∪ ((a ∩ b⊥ ) ∪ (c⊥ ∩ b⊥ ))) ∪ (b ∪ ((a
∩ b⊥ ) ∪ (c⊥ ∩ b⊥ )))) = ((a →0 b) →0 (c →2 b)) |
39 | 25, 38 | lbtr 139 |
. 2
c ≤ ((a →0 b) →0 (c →2 b)) |
40 | | 3vded22.3 |
. 2
c ≤ (a →0 b) |
41 | 39, 40 | 3vded21 817 |
1
c ≤ b |