Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wnbdi | GIF version |
Description: Negated biconditional (distributive form). (Contributed by NM, 13-Oct-1997.) |
Ref | Expression |
---|---|
wnbdi | ((a ≡ b)⊥ ≡ (((a ∪ b) ∩ a⊥ ) ∪ ((a ∪ b) ∩ b⊥ ))) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnb 95 | . . 3 (a ≡ b)⊥ = ((a ∪ b) ∩ (a⊥ ∪ b⊥ )) | |
2 | 1 | bi1 118 | . 2 ((a ≡ b)⊥ ≡ ((a ∪ b) ∩ (a⊥ ∪ b⊥ ))) = 1 |
3 | wcomorr 412 | . . . . 5 C (a, (a ∪ b)) = 1 | |
4 | 3 | wcomcom 414 | . . . 4 C ((a ∪ b), a) = 1 |
5 | 4 | wcomcom2 415 | . . 3 C ((a ∪ b), a⊥ ) = 1 |
6 | wcomorr 412 | . . . . . 6 C (b, (b ∪ a)) = 1 | |
7 | ax-a2 31 | . . . . . . 7 (b ∪ a) = (a ∪ b) | |
8 | 7 | bi1 118 | . . . . . 6 ((b ∪ a) ≡ (a ∪ b)) = 1 |
9 | 6, 8 | wcbtr 411 | . . . . 5 C (b, (a ∪ b)) = 1 |
10 | 9 | wcomcom 414 | . . . 4 C ((a ∪ b), b) = 1 |
11 | 10 | wcomcom2 415 | . . 3 C ((a ∪ b), b⊥ ) = 1 |
12 | 5, 11 | wfh1 423 | . 2 (((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ≡ (((a ∪ b) ∩ a⊥ ) ∪ ((a ∪ b) ∩ b⊥ ))) = 1 |
13 | 2, 12 | wr2 371 | 1 ((a ≡ b)⊥ ≡ (((a ∪ b) ∩ a⊥ ) ∪ ((a ∪ b) ∩ b⊥ ))) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ≡ tb 5 ∪ wo 6 ∩ wa 7 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |