Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > gomaex3lem1 | GIF version |
Description: Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
Ref | Expression |
---|---|
gomaex3lem1.3 | c ≤ d⊥ |
Ref | Expression |
---|---|
gomaex3lem1 | (c ∪ (c ∪ d)⊥ ) = d⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comid 187 | . . . 4 c C c | |
2 | 1 | comcom2 183 | . . 3 c C c⊥ |
3 | gomaex3lem1.3 | . . . 4 c ≤ d⊥ | |
4 | 3 | lecom 180 | . . 3 c C d⊥ |
5 | 2, 4 | fh3 471 | . 2 (c ∪ (c⊥ ∩ d⊥ )) = ((c ∪ c⊥ ) ∩ (c ∪ d⊥ )) |
6 | anor3 90 | . . 3 (c⊥ ∩ d⊥ ) = (c ∪ d)⊥ | |
7 | 6 | lor 70 | . 2 (c ∪ (c⊥ ∩ d⊥ )) = (c ∪ (c ∪ d)⊥ ) |
8 | ancom 74 | . . 3 ((c ∪ c⊥ ) ∩ (c ∪ d⊥ )) = ((c ∪ d⊥ ) ∩ (c ∪ c⊥ )) | |
9 | 3 | df-le2 131 | . . . . . 6 (c ∪ d⊥ ) = d⊥ |
10 | 9 | ax-r1 35 | . . . . 5 d⊥ = (c ∪ d⊥ ) |
11 | df-t 41 | . . . . 5 1 = (c ∪ c⊥ ) | |
12 | 10, 11 | 2an 79 | . . . 4 (d⊥ ∩ 1) = ((c ∪ d⊥ ) ∩ (c ∪ c⊥ )) |
13 | 12 | ax-r1 35 | . . 3 ((c ∪ d⊥ ) ∩ (c ∪ c⊥ )) = (d⊥ ∩ 1) |
14 | an1 106 | . . 3 (d⊥ ∩ 1) = d⊥ | |
15 | 8, 13, 14 | 3tr 65 | . 2 ((c ∪ c⊥ ) ∩ (c ∪ d⊥ )) = d⊥ |
16 | 5, 7, 15 | 3tr2 64 | 1 (c ∪ (c ∪ d)⊥ ) = d⊥ |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: gomaex3lem7 920 |
Copyright terms: Public domain | W3C validator |