Proof of Theorem i1abs
Step | Hyp | Ref
| Expression |
1 | | ud1lem0c 277 |
. . 3
(a →1 b)⊥ = (a ∩ (a⊥ ∪ b⊥ )) |
2 | 1 | ax-r5 38 |
. 2
((a →1 b)⊥ ∪ (a ∩ b)) =
((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∩ b)) |
3 | | comanr1 464 |
. . 3
a C (a ∩ b) |
4 | | comorr 184 |
. . . 4
a⊥ C
(a⊥ ∪ b⊥ ) |
5 | 4 | comcom6 459 |
. . 3
a C (a⊥ ∪ b⊥ ) |
6 | 3, 5 | fh4r 476 |
. 2
((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∩ b)) =
((a ∪ (a ∩ b))
∩ ((a⊥ ∪ b⊥ ) ∪ (a ∩ b))) |
7 | | orabs 120 |
. . . 4
(a ∪ (a ∩ b)) =
a |
8 | | df-a 40 |
. . . . . 6
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
9 | 8 | lor 70 |
. . . . 5
((a⊥ ∪ b⊥ ) ∪ (a ∩ b)) =
((a⊥ ∪ b⊥ ) ∪ (a⊥ ∪ b⊥ )⊥
) |
10 | | df-t 41 |
. . . . . 6
1 = ((a⊥ ∪
b⊥ ) ∪ (a⊥ ∪ b⊥ )⊥
) |
11 | 10 | ax-r1 35 |
. . . . 5
((a⊥ ∪ b⊥ ) ∪ (a⊥ ∪ b⊥ )⊥ ) =
1 |
12 | 9, 11 | ax-r2 36 |
. . . 4
((a⊥ ∪ b⊥ ) ∪ (a ∩ b)) =
1 |
13 | 7, 12 | 2an 79 |
. . 3
((a ∪ (a ∩ b))
∩ ((a⊥ ∪ b⊥ ) ∪ (a ∩ b))) =
(a ∩ 1) |
14 | | an1 106 |
. . 3
(a ∩ 1) = a |
15 | 13, 14 | ax-r2 36 |
. 2
((a ∪ (a ∩ b))
∩ ((a⊥ ∪ b⊥ ) ∪ (a ∩ b))) =
a |
16 | 2, 6, 15 | 3tr 65 |
1
((a →1 b)⊥ ∪ (a ∩ b)) =
a |