Proof of Theorem test
Step | Hyp | Ref
| Expression |
1 | | oran3 93 |
. . . . 5
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
2 | 1 | lor 70 |
. . . 4
(c ∪ (a⊥ ∪ b⊥ )) = (c ∪ (a ∩
b)⊥ ) |
3 | 2 | ran 78 |
. . 3
((c ∪ (a⊥ ∪ b⊥ )) ∩ (c⊥ ∩ (c ∪ (a ∩
b)))) = ((c ∪ (a ∩
b)⊥ ) ∩ (c⊥ ∩ (c ∪ (a ∩
b)))) |
4 | 3 | ax-r5 38 |
. 2
(((c ∪ (a⊥ ∪ b⊥ )) ∩ (c⊥ ∩ (c ∪ (a ∩
b)))) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b))))) =
(((c ∪ (a ∩ b)⊥ ) ∩ (c⊥ ∩ (c ∪ (a ∩
b)))) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b))))) |
5 | | comor1 461 |
. . . . . . 7
(c ∪ (a ∩ b)⊥ ) C c |
6 | 5 | comcom2 183 |
. . . . . 6
(c ∪ (a ∩ b)⊥ ) C c⊥ |
7 | | comor2 462 |
. . . . . . 7
(c ∪ (a ∩ b)⊥ ) C (a ∩ b)⊥ |
8 | 7 | comcom7 460 |
. . . . . 6
(c ∪ (a ∩ b)⊥ ) C (a ∩ b) |
9 | 6, 8 | com2an 484 |
. . . . 5
(c ∪ (a ∩ b)⊥ ) C (c⊥ ∩ (a ∩ b)) |
10 | 6, 8 | com2or 483 |
. . . . . 6
(c ∪ (a ∩ b)⊥ ) C (c⊥ ∪ (a ∩ b)) |
11 | 5, 10 | com2an 484 |
. . . . 5
(c ∪ (a ∩ b)⊥ ) C (c ∩ (c⊥ ∪ (a ∩ b))) |
12 | 9, 11 | com2or 483 |
. . . 4
(c ∪ (a ∩ b)⊥ ) C ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))) |
13 | 5, 8 | com2or 483 |
. . . . 5
(c ∪ (a ∩ b)⊥ ) C (c ∪ (a ∩
b)) |
14 | 6, 13 | com2an 484 |
. . . 4
(c ∪ (a ∩ b)⊥ ) C (c⊥ ∩ (c ∪ (a ∩
b))) |
15 | 12, 14 | fh4r 476 |
. . 3
(((c ∪ (a ∩ b)⊥ ) ∩ (c⊥ ∩ (c ∪ (a ∩
b)))) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b))))) =
(((c ∪ (a ∩ b)⊥ ) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))))
∩ ((c⊥ ∩ (c ∪ (a ∩
b))) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))))) |
16 | | ax-a3 32 |
. . . . . . 7
(((c ∪ (a ∩ b)⊥ ) ∪ (c⊥ ∩ (a ∩ b)))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))) =
((c ∪ (a ∩ b)⊥ ) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b))))) |
17 | 16 | ax-r1 35 |
. . . . . 6
((c ∪ (a ∩ b)⊥ ) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b))))) =
(((c ∪ (a ∩ b)⊥ ) ∪ (c⊥ ∩ (a ∩ b)))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))) |
18 | | ax-a2 31 |
. . . . . . 7
(((c ∪ (a ∩ b)⊥ ) ∪ (c⊥ ∩ (a ∩ b)))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))) =
((c ∩ (c⊥ ∪ (a ∩ b)))
∪ ((c ∪ (a ∩ b)⊥ ) ∪ (c⊥ ∩ (a ∩ b)))) |
19 | | anor2 89 |
. . . . . . . . . . 11
(c⊥ ∩ (a ∩ b)) =
(c ∪ (a ∩ b)⊥
)⊥ |
20 | 19 | lor 70 |
. . . . . . . . . 10
((c ∪ (a ∩ b)⊥ ) ∪ (c⊥ ∩ (a ∩ b))) =
((c ∪ (a ∩ b)⊥ ) ∪ (c ∪ (a ∩
b)⊥ )⊥
) |
21 | | df-t 41 |
. . . . . . . . . . 11
1 = ((c ∪ (a ∩ b)⊥ ) ∪ (c ∪ (a ∩
b)⊥ )⊥
) |
22 | 21 | ax-r1 35 |
. . . . . . . . . 10
((c ∪ (a ∩ b)⊥ ) ∪ (c ∪ (a ∩
b)⊥ )⊥ )
= 1 |
23 | 20, 22 | ax-r2 36 |
. . . . . . . . 9
((c ∪ (a ∩ b)⊥ ) ∪ (c⊥ ∩ (a ∩ b))) =
1 |
24 | 23 | lor 70 |
. . . . . . . 8
((c ∩ (c⊥ ∪ (a ∩ b)))
∪ ((c ∪ (a ∩ b)⊥ ) ∪ (c⊥ ∩ (a ∩ b)))) =
((c ∩ (c⊥ ∪ (a ∩ b)))
∪ 1) |
25 | | or1 104 |
. . . . . . . 8
((c ∩ (c⊥ ∪ (a ∩ b)))
∪ 1) = 1 |
26 | 24, 25 | ax-r2 36 |
. . . . . . 7
((c ∩ (c⊥ ∪ (a ∩ b)))
∪ ((c ∪ (a ∩ b)⊥ ) ∪ (c⊥ ∩ (a ∩ b)))) =
1 |
27 | 18, 26 | ax-r2 36 |
. . . . . 6
(((c ∪ (a ∩ b)⊥ ) ∪ (c⊥ ∩ (a ∩ b)))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))) =
1 |
28 | 17, 27 | ax-r2 36 |
. . . . 5
((c ∪ (a ∩ b)⊥ ) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b))))) =
1 |
29 | | ax-a3 32 |
. . . . . . 7
(((c⊥ ∩
(c ∪ (a ∩ b)))
∪ (c⊥ ∩ (a ∩ b)))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))) =
((c⊥ ∩ (c ∪ (a ∩
b))) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b))))) |
30 | 29 | ax-r1 35 |
. . . . . 6
((c⊥ ∩
(c ∪ (a ∩ b)))
∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b))))) =
(((c⊥ ∩ (c ∪ (a ∩
b))) ∪ (c⊥ ∩ (a ∩ b)))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))) |
31 | | ax-a2 31 |
. . . . . . . . 9
((c⊥ ∩
(c ∪ (a ∩ b)))
∪ (c⊥ ∩ (a ∩ b))) =
((c⊥ ∩ (a ∩ b))
∪ (c⊥ ∩ (c ∪ (a ∩
b)))) |
32 | | leor 159 |
. . . . . . . . . . 11
(a ∩ b) ≤ (c ∪
(a ∩ b)) |
33 | 32 | lelan 167 |
. . . . . . . . . 10
(c⊥ ∩ (a ∩ b)) ≤
(c⊥ ∩ (c ∪ (a ∩
b))) |
34 | 33 | df-le2 131 |
. . . . . . . . 9
((c⊥ ∩
(a ∩ b)) ∪ (c⊥ ∩ (c ∪ (a ∩
b)))) = (c⊥ ∩ (c ∪ (a ∩
b))) |
35 | 31, 34 | ax-r2 36 |
. . . . . . . 8
((c⊥ ∩
(c ∪ (a ∩ b)))
∪ (c⊥ ∩ (a ∩ b))) =
(c⊥ ∩ (c ∪ (a ∩
b))) |
36 | 35 | ax-r5 38 |
. . . . . . 7
(((c⊥ ∩
(c ∪ (a ∩ b)))
∪ (c⊥ ∩ (a ∩ b)))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))) =
((c⊥ ∩ (c ∪ (a ∩
b))) ∪ (c ∩ (c⊥ ∪ (a ∩ b)))) |
37 | | coman1 185 |
. . . . . . . . . 10
(c⊥ ∩ (c ∪ (a ∩
b))) C c⊥ |
38 | 37 | comcom7 460 |
. . . . . . . . 9
(c⊥ ∩ (c ∪ (a ∩
b))) C c |
39 | | comor1 461 |
. . . . . . . . . . 11
(c⊥ ∪ (a ∩ b)) C
c⊥ |
40 | 39 | comcom7 460 |
. . . . . . . . . . . 12
(c⊥ ∪ (a ∩ b)) C
c |
41 | | comor2 462 |
. . . . . . . . . . . 12
(c⊥ ∪ (a ∩ b)) C
(a ∩ b) |
42 | 40, 41 | com2or 483 |
. . . . . . . . . . 11
(c⊥ ∪ (a ∩ b)) C
(c ∪ (a ∩ b)) |
43 | 39, 42 | com2an 484 |
. . . . . . . . . 10
(c⊥ ∪ (a ∩ b)) C
(c⊥ ∩ (c ∪ (a ∩
b))) |
44 | 43 | comcom 453 |
. . . . . . . . 9
(c⊥ ∩ (c ∪ (a ∩
b))) C (c⊥ ∪ (a ∩ b)) |
45 | 38, 44 | fh3 471 |
. . . . . . . 8
((c⊥ ∩
(c ∪ (a ∩ b)))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))) =
(((c⊥ ∩ (c ∪ (a ∩
b))) ∪ c) ∩ ((c⊥ ∩ (c ∪ (a ∩
b))) ∪ (c⊥ ∪ (a ∩ b)))) |
46 | | ax-a2 31 |
. . . . . . . . . 10
((c⊥ ∩
(c ∪ (a ∩ b)))
∪ c) = (c ∪ (c⊥ ∩ (c ∪ (a ∩
b)))) |
47 | | oml 445 |
. . . . . . . . . 10
(c ∪ (c⊥ ∩ (c ∪ (a ∩
b)))) = (c ∪ (a ∩
b)) |
48 | 46, 47 | ax-r2 36 |
. . . . . . . . 9
((c⊥ ∩
(c ∪ (a ∩ b)))
∪ c) = (c ∪ (a ∩
b)) |
49 | | or12 80 |
. . . . . . . . . 10
((c⊥ ∩
(c ∪ (a ∩ b)))
∪ (c⊥ ∪ (a ∩ b))) =
(c⊥ ∪ ((c⊥ ∩ (c ∪ (a ∩
b))) ∪ (a ∩ b))) |
50 | | ax-a3 32 |
. . . . . . . . . . . 12
((c⊥ ∪
(c⊥ ∩ (c ∪ (a ∩
b)))) ∪ (a ∩ b)) =
(c⊥ ∪ ((c⊥ ∩ (c ∪ (a ∩
b))) ∪ (a ∩ b))) |
51 | 50 | ax-r1 35 |
. . . . . . . . . . 11
(c⊥ ∪
((c⊥ ∩ (c ∪ (a ∩
b))) ∪ (a ∩ b))) =
((c⊥ ∪ (c⊥ ∩ (c ∪ (a ∩
b)))) ∪ (a ∩ b)) |
52 | | orabs 120 |
. . . . . . . . . . . 12
(c⊥ ∪ (c⊥ ∩ (c ∪ (a ∩
b)))) = c⊥ |
53 | 52 | ax-r5 38 |
. . . . . . . . . . 11
((c⊥ ∪
(c⊥ ∩ (c ∪ (a ∩
b)))) ∪ (a ∩ b)) =
(c⊥ ∪ (a ∩ b)) |
54 | 51, 53 | ax-r2 36 |
. . . . . . . . . 10
(c⊥ ∪
((c⊥ ∩ (c ∪ (a ∩
b))) ∪ (a ∩ b))) =
(c⊥ ∪ (a ∩ b)) |
55 | 49, 54 | ax-r2 36 |
. . . . . . . . 9
((c⊥ ∩
(c ∪ (a ∩ b)))
∪ (c⊥ ∪ (a ∩ b))) =
(c⊥ ∪ (a ∩ b)) |
56 | 48, 55 | 2an 79 |
. . . . . . . 8
(((c⊥ ∩
(c ∪ (a ∩ b)))
∪ c) ∩ ((c⊥ ∩ (c ∪ (a ∩
b))) ∪ (c⊥ ∪ (a ∩ b)))) =
((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b))) |
57 | 45, 56 | ax-r2 36 |
. . . . . . 7
((c⊥ ∩
(c ∪ (a ∩ b)))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))) =
((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b))) |
58 | 36, 57 | ax-r2 36 |
. . . . . 6
(((c⊥ ∩
(c ∪ (a ∩ b)))
∪ (c⊥ ∩ (a ∩ b)))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))) =
((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b))) |
59 | 30, 58 | ax-r2 36 |
. . . . 5
((c⊥ ∩
(c ∪ (a ∩ b)))
∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b))))) =
((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b))) |
60 | 28, 59 | 2an 79 |
. . . 4
(((c ∪ (a ∩ b)⊥ ) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))))
∩ ((c⊥ ∩ (c ∪ (a ∩
b))) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b))))))
= (1 ∩ ((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b)))) |
61 | | ancom 74 |
. . . . 5
(1 ∩ ((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b)))) =
(((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b)))
∩ 1) |
62 | | an1 106 |
. . . . 5
(((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b)))
∩ 1) = ((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b))) |
63 | 61, 62 | ax-r2 36 |
. . . 4
(1 ∩ ((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b)))) =
((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b))) |
64 | 60, 63 | ax-r2 36 |
. . 3
(((c ∪ (a ∩ b)⊥ ) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b)))))
∩ ((c⊥ ∩ (c ∪ (a ∩
b))) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b))))))
= ((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b))) |
65 | 15, 64 | ax-r2 36 |
. 2
(((c ∪ (a ∩ b)⊥ ) ∩ (c⊥ ∩ (c ∪ (a ∩
b)))) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b))))) =
((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b))) |
66 | 4, 65 | ax-r2 36 |
1
(((c ∪ (a⊥ ∪ b⊥ )) ∩ (c⊥ ∩ (c ∪ (a ∩
b)))) ∪ ((c⊥ ∩ (a ∩ b))
∪ (c ∩ (c⊥ ∪ (a ∩ b))))) =
((c ∪ (a ∩ b))
∩ (c⊥ ∪ (a ∩ b))) |