Proof of Theorem mlalem
Step | Hyp | Ref
| Expression |
1 | | comanr2 465 |
. . . . . 6
b C (a ∩ b) |
2 | 1 | comcom3 454 |
. . . . 5
b⊥ C
(a ∩ b) |
3 | | comanr1 464 |
. . . . . 6
b C (b ∩ c) |
4 | 3 | comcom3 454 |
. . . . 5
b⊥ C
(b ∩ c) |
5 | 2, 4 | fh2 470 |
. . . 4
((a ∩ b) ∩ (b⊥ ∪ (b ∩ c))) =
(((a ∩ b) ∩ b⊥ ) ∪ ((a ∩ b) ∩
(b ∩ c))) |
6 | | anass 76 |
. . . . . . 7
((a ∩ b) ∩ b⊥ ) = (a ∩ (b ∩
b⊥ )) |
7 | | dff 101 |
. . . . . . . . 9
0 = (b ∩ b⊥ ) |
8 | 7 | ax-r1 35 |
. . . . . . . 8
(b ∩ b⊥ ) = 0 |
9 | 8 | lan 77 |
. . . . . . 7
(a ∩ (b ∩ b⊥ )) = (a ∩ 0) |
10 | | an0 108 |
. . . . . . 7
(a ∩ 0) = 0 |
11 | 6, 9, 10 | 3tr 65 |
. . . . . 6
((a ∩ b) ∩ b⊥ ) = 0 |
12 | | le0 147 |
. . . . . 6
0 ≤ (a⊥ ∪
(a ∩ c)) |
13 | 11, 12 | bltr 138 |
. . . . 5
((a ∩ b) ∩ b⊥ ) ≤ (a⊥ ∪ (a ∩ c)) |
14 | | anass 76 |
. . . . . . 7
((a ∩ b) ∩ (b
∩ c)) = (a ∩ (b ∩
(b ∩ c))) |
15 | | an12 81 |
. . . . . . 7
(a ∩ (b ∩ (b ∩
c))) = (b ∩ (a ∩
(b ∩ c))) |
16 | | anass 76 |
. . . . . . . . 9
((b ∩ a) ∩ (b
∩ c)) = (b ∩ (a ∩
(b ∩ c))) |
17 | 16 | ax-r1 35 |
. . . . . . . 8
(b ∩ (a ∩ (b ∩
c))) = ((b ∩ a) ∩
(b ∩ c)) |
18 | | an4 86 |
. . . . . . . 8
((b ∩ a) ∩ (b
∩ c)) = ((b ∩ b) ∩
(a ∩ c)) |
19 | 17, 18 | ax-r2 36 |
. . . . . . 7
(b ∩ (a ∩ (b ∩
c))) = ((b ∩ b) ∩
(a ∩ c)) |
20 | 14, 15, 19 | 3tr 65 |
. . . . . 6
((a ∩ b) ∩ (b
∩ c)) = ((b ∩ b) ∩
(a ∩ c)) |
21 | | lear 161 |
. . . . . . 7
((b ∩ b) ∩ (a
∩ c)) ≤ (a ∩ c) |
22 | | leor 159 |
. . . . . . 7
(a ∩ c) ≤ (a⊥ ∪ (a ∩ c)) |
23 | 21, 22 | letr 137 |
. . . . . 6
((b ∩ b) ∩ (a
∩ c)) ≤ (a⊥ ∪ (a ∩ c)) |
24 | 20, 23 | bltr 138 |
. . . . 5
((a ∩ b) ∩ (b
∩ c)) ≤ (a⊥ ∪ (a ∩ c)) |
25 | 13, 24 | lel2or 170 |
. . . 4
(((a ∩ b) ∩ b⊥ ) ∪ ((a ∩ b) ∩
(b ∩ c))) ≤ (a⊥ ∪ (a ∩ c)) |
26 | 5, 25 | bltr 138 |
. . 3
((a ∩ b) ∩ (b⊥ ∪ (b ∩ c)))
≤ (a⊥ ∪ (a ∩ c)) |
27 | | anass 76 |
. . . 4
((a⊥ ∩ b⊥ ) ∩ (b⊥ ∪ (b ∩ c))) =
(a⊥ ∩ (b⊥ ∩ (b⊥ ∪ (b ∩ c)))) |
28 | | lea 160 |
. . . . 5
(a⊥ ∩ (b⊥ ∩ (b⊥ ∪ (b ∩ c))))
≤ a⊥ |
29 | | leo 158 |
. . . . 5
a⊥ ≤ (a⊥ ∪ (a ∩ c)) |
30 | 28, 29 | letr 137 |
. . . 4
(a⊥ ∩ (b⊥ ∩ (b⊥ ∪ (b ∩ c))))
≤ (a⊥ ∪ (a ∩ c)) |
31 | 27, 30 | bltr 138 |
. . 3
((a⊥ ∩ b⊥ ) ∩ (b⊥ ∪ (b ∩ c)))
≤ (a⊥ ∪ (a ∩ c)) |
32 | 26, 31 | lel2or 170 |
. 2
(((a ∩ b) ∩ (b⊥ ∪ (b ∩ c)))
∪ ((a⊥ ∩ b⊥ ) ∩ (b⊥ ∪ (b ∩ c))))
≤ (a⊥ ∪ (a ∩ c)) |
33 | | dfb 94 |
. . . 4
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
34 | | df-i1 44 |
. . . 4
(b →1 c) = (b⊥ ∪ (b ∩ c)) |
35 | 33, 34 | 2an 79 |
. . 3
((a ≡ b) ∩ (b
→1 c)) = (((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∩ (b⊥ ∪ (b ∩ c))) |
36 | | lear 161 |
. . . . . 6
(a⊥ ∩ b⊥ ) ≤ b⊥ |
37 | | leo 158 |
. . . . . 6
b⊥ ≤ (b⊥ ∪ (b ∩ c)) |
38 | 36, 37 | letr 137 |
. . . . 5
(a⊥ ∩ b⊥ ) ≤ (b⊥ ∪ (b ∩ c)) |
39 | 38 | lecom 180 |
. . . 4
(a⊥ ∩ b⊥ ) C (b⊥ ∪ (b ∩ c)) |
40 | | coman1 185 |
. . . . . . 7
(a⊥ ∩ b⊥ ) C a⊥ |
41 | | coman2 186 |
. . . . . . 7
(a⊥ ∩ b⊥ ) C b⊥ |
42 | 40, 41 | com2or 483 |
. . . . . 6
(a⊥ ∩ b⊥ ) C (a⊥ ∪ b⊥ ) |
43 | | oran3 93 |
. . . . . 6
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
44 | 42, 43 | cbtr 182 |
. . . . 5
(a⊥ ∩ b⊥ ) C (a ∩ b)⊥ |
45 | 44 | comcom7 460 |
. . . 4
(a⊥ ∩ b⊥ ) C (a ∩ b) |
46 | 39, 45 | fh2rc 480 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∪ (b ∩ c))) =
(((a ∩ b) ∩ (b⊥ ∪ (b ∩ c)))
∪ ((a⊥ ∩ b⊥ ) ∩ (b⊥ ∪ (b ∩ c)))) |
47 | 35, 46 | ax-r2 36 |
. 2
((a ≡ b) ∩ (b
→1 c)) = (((a ∩ b) ∩
(b⊥ ∪ (b ∩ c)))
∪ ((a⊥ ∩ b⊥ ) ∩ (b⊥ ∪ (b ∩ c)))) |
48 | | df-i1 44 |
. 2
(a →1 c) = (a⊥ ∪ (a ∩ c)) |
49 | 32, 47, 48 | le3tr1 140 |
1
((a ≡ b) ∩ (b
→1 c)) ≤ (a →1 c) |