Proof of Theorem marsdenlem3
| Step | Hyp | Ref
| Expression |
| 1 | | lea 160 |
. . . . . . . 8
(b ∩ d⊥ ) ≤ b |
| 2 | 1 | lecon 154 |
. . . . . . 7
b⊥ ≤ (b ∩ d⊥
)⊥ |
| 3 | 2 | lel 151 |
. . . . . 6
(b⊥ ∩ c) ≤ (b ∩
d⊥
)⊥ |
| 4 | 3 | lecom 180 |
. . . . 5
(b⊥ ∩ c) C (b
∩ d⊥
)⊥ |
| 5 | 4 | comcom7 460 |
. . . 4
(b⊥ ∩ c) C (b
∩ d⊥
) |
| 6 | 5 | comcom 453 |
. . 3
(b ∩ d⊥ ) C (b⊥ ∩ c) |
| 7 | | lear 161 |
. . . . . . . 8
(c⊥ ∩ d) ≤ d |
| 8 | 7 | lerr 150 |
. . . . . . 7
(c⊥ ∩ d) ≤ (b⊥ ∪ d) |
| 9 | | oran2 92 |
. . . . . . 7
(b⊥ ∪ d) = (b ∩
d⊥
)⊥ |
| 10 | 8, 9 | lbtr 139 |
. . . . . 6
(c⊥ ∩ d) ≤ (b ∩
d⊥
)⊥ |
| 11 | 10 | lecom 180 |
. . . . 5
(c⊥ ∩ d) C (b
∩ d⊥
)⊥ |
| 12 | 11 | comcom7 460 |
. . . 4
(c⊥ ∩ d) C (b
∩ d⊥
) |
| 13 | 12 | comcom 453 |
. . 3
(b ∩ d⊥ ) C (c⊥ ∩ d) |
| 14 | 6, 13 | fh1r 473 |
. 2
(((b⊥ ∩
c) ∪ (c⊥ ∩ d)) ∩ (b
∩ d⊥ )) = (((b⊥ ∩ c) ∩ (b
∩ d⊥ )) ∪
((c⊥ ∩ d) ∩ (b
∩ d⊥
))) |
| 15 | | an4 86 |
. . . 4
((b⊥ ∩ c) ∩ (b
∩ d⊥ )) = ((b⊥ ∩ b) ∩ (c
∩ d⊥
)) |
| 16 | | ancom 74 |
. . . . . 6
(b⊥ ∩ b) = (b ∩
b⊥ ) |
| 17 | | dff 101 |
. . . . . . 7
0 = (b ∩ b⊥ ) |
| 18 | 17 | ax-r1 35 |
. . . . . 6
(b ∩ b⊥ ) = 0 |
| 19 | 16, 18 | ax-r2 36 |
. . . . 5
(b⊥ ∩ b) = 0 |
| 20 | 19 | ran 78 |
. . . 4
((b⊥ ∩ b) ∩ (c
∩ d⊥ )) = (0 ∩
(c ∩ d⊥ )) |
| 21 | | an0r 109 |
. . . 4
(0 ∩ (c ∩ d⊥ )) = 0 |
| 22 | 15, 20, 21 | 3tr 65 |
. . 3
((b⊥ ∩ c) ∩ (b
∩ d⊥ )) =
0 |
| 23 | | an4 86 |
. . . 4
((c⊥ ∩ d) ∩ (b
∩ d⊥ )) = ((c⊥ ∩ b) ∩ (d
∩ d⊥
)) |
| 24 | | dff 101 |
. . . . . 6
0 = (d ∩ d⊥ ) |
| 25 | 24 | ax-r1 35 |
. . . . 5
(d ∩ d⊥ ) = 0 |
| 26 | 25 | lan 77 |
. . . 4
((c⊥ ∩ b) ∩ (d
∩ d⊥ )) = ((c⊥ ∩ b) ∩ 0) |
| 27 | | an0 108 |
. . . 4
((c⊥ ∩ b) ∩ 0) = 0 |
| 28 | 23, 26, 27 | 3tr 65 |
. . 3
((c⊥ ∩ d) ∩ (b
∩ d⊥ )) =
0 |
| 29 | 22, 28 | 2or 72 |
. 2
(((b⊥ ∩
c) ∩ (b ∩ d⊥ )) ∪ ((c⊥ ∩ d) ∩ (b
∩ d⊥ ))) = (0 ∪
0) |
| 30 | | or0 102 |
. 2
(0 ∪ 0) = 0 |
| 31 | 14, 29, 30 | 3tr 65 |
1
(((b⊥ ∩
c) ∪ (c⊥ ∩ d)) ∩ (b
∩ d⊥ )) =
0 |