Proof of Theorem marsdenlem3
Step | Hyp | Ref
| Expression |
1 | | lea 160 |
. . . . . . . 8
(b ∩ d⊥ ) ≤ b |
2 | 1 | lecon 154 |
. . . . . . 7
b⊥ ≤ (b ∩ d⊥
)⊥ |
3 | 2 | lel 151 |
. . . . . 6
(b⊥ ∩ c) ≤ (b ∩
d⊥
)⊥ |
4 | 3 | lecom 180 |
. . . . 5
(b⊥ ∩ c) C (b
∩ d⊥
)⊥ |
5 | 4 | comcom7 460 |
. . . 4
(b⊥ ∩ c) C (b
∩ d⊥
) |
6 | 5 | comcom 453 |
. . 3
(b ∩ d⊥ ) C (b⊥ ∩ c) |
7 | | lear 161 |
. . . . . . . 8
(c⊥ ∩ d) ≤ d |
8 | 7 | lerr 150 |
. . . . . . 7
(c⊥ ∩ d) ≤ (b⊥ ∪ d) |
9 | | oran2 92 |
. . . . . . 7
(b⊥ ∪ d) = (b ∩
d⊥
)⊥ |
10 | 8, 9 | lbtr 139 |
. . . . . 6
(c⊥ ∩ d) ≤ (b ∩
d⊥
)⊥ |
11 | 10 | lecom 180 |
. . . . 5
(c⊥ ∩ d) C (b
∩ d⊥
)⊥ |
12 | 11 | comcom7 460 |
. . . 4
(c⊥ ∩ d) C (b
∩ d⊥
) |
13 | 12 | comcom 453 |
. . 3
(b ∩ d⊥ ) C (c⊥ ∩ d) |
14 | 6, 13 | fh1r 473 |
. 2
(((b⊥ ∩
c) ∪ (c⊥ ∩ d)) ∩ (b
∩ d⊥ )) = (((b⊥ ∩ c) ∩ (b
∩ d⊥ )) ∪
((c⊥ ∩ d) ∩ (b
∩ d⊥
))) |
15 | | an4 86 |
. . . 4
((b⊥ ∩ c) ∩ (b
∩ d⊥ )) = ((b⊥ ∩ b) ∩ (c
∩ d⊥
)) |
16 | | ancom 74 |
. . . . . 6
(b⊥ ∩ b) = (b ∩
b⊥ ) |
17 | | dff 101 |
. . . . . . 7
0 = (b ∩ b⊥ ) |
18 | 17 | ax-r1 35 |
. . . . . 6
(b ∩ b⊥ ) = 0 |
19 | 16, 18 | ax-r2 36 |
. . . . 5
(b⊥ ∩ b) = 0 |
20 | 19 | ran 78 |
. . . 4
((b⊥ ∩ b) ∩ (c
∩ d⊥ )) = (0 ∩
(c ∩ d⊥ )) |
21 | | an0r 109 |
. . . 4
(0 ∩ (c ∩ d⊥ )) = 0 |
22 | 15, 20, 21 | 3tr 65 |
. . 3
((b⊥ ∩ c) ∩ (b
∩ d⊥ )) =
0 |
23 | | an4 86 |
. . . 4
((c⊥ ∩ d) ∩ (b
∩ d⊥ )) = ((c⊥ ∩ b) ∩ (d
∩ d⊥
)) |
24 | | dff 101 |
. . . . . 6
0 = (d ∩ d⊥ ) |
25 | 24 | ax-r1 35 |
. . . . 5
(d ∩ d⊥ ) = 0 |
26 | 25 | lan 77 |
. . . 4
((c⊥ ∩ b) ∩ (d
∩ d⊥ )) = ((c⊥ ∩ b) ∩ 0) |
27 | | an0 108 |
. . . 4
((c⊥ ∩ b) ∩ 0) = 0 |
28 | 23, 26, 27 | 3tr 65 |
. . 3
((c⊥ ∩ d) ∩ (b
∩ d⊥ )) =
0 |
29 | 22, 28 | 2or 72 |
. 2
(((b⊥ ∩
c) ∩ (b ∩ d⊥ )) ∪ ((c⊥ ∩ d) ∩ (b
∩ d⊥ ))) = (0 ∪
0) |
30 | | or0 102 |
. 2
(0 ∪ 0) = 0 |
31 | 14, 29, 30 | 3tr 65 |
1
(((b⊥ ∩
c) ∪ (c⊥ ∩ d)) ∩ (b
∩ d⊥ )) =
0 |