Proof of Theorem u24lem
| Step | Hyp | Ref
| Expression |
| 1 | | df-i2 45 |
. . 3
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
| 2 | 1 | ran 78 |
. 2
((a →2 b) ∩ (a
→4 b)) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ (a →4 b)) |
| 3 | | u4lemc1 683 |
. . . 4
b C (a →4 b) |
| 4 | | comanr2 465 |
. . . . 5
b⊥ C
(a⊥ ∩ b⊥ ) |
| 5 | 4 | comcom6 459 |
. . . 4
b C (a⊥ ∩ b⊥ ) |
| 6 | 3, 5 | fh2r 474 |
. . 3
((b ∪ (a⊥ ∩ b⊥ )) ∩ (a →4 b)) = ((b ∩
(a →4 b)) ∪ ((a⊥ ∩ b⊥ ) ∩ (a →4 b))) |
| 7 | | ancom 74 |
. . . . . 6
(b ∩ (a →4 b)) = ((a
→4 b) ∩ b) |
| 8 | | ancom 74 |
. . . . . 6
((a →4 b) ∩ b) =
(b ∩ (a →4 b)) |
| 9 | 7, 8 | ax-r2 36 |
. . . . 5
(b ∩ (a →4 b)) = (b ∩
(a →4 b)) |
| 10 | | anass 76 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ (a →4 b)) = (a⊥ ∩ (b⊥ ∩ (a →4 b))) |
| 11 | | ancom 74 |
. . . . . . . . 9
(b⊥ ∩ (a →4 b)) = ((a
→4 b) ∩ b⊥ ) |
| 12 | | u4lemanb 618 |
. . . . . . . . 9
((a →4 b) ∩ b⊥ ) = ((a⊥ ∪ b) ∩ b⊥ ) |
| 13 | 11, 12 | ax-r2 36 |
. . . . . . . 8
(b⊥ ∩ (a →4 b)) = ((a⊥ ∪ b) ∩ b⊥ ) |
| 14 | 13 | lan 77 |
. . . . . . 7
(a⊥ ∩ (b⊥ ∩ (a →4 b))) = (a⊥ ∩ ((a⊥ ∪ b) ∩ b⊥ )) |
| 15 | | anass 76 |
. . . . . . . . 9
((a⊥ ∩
(a⊥ ∪ b)) ∩ b⊥ ) = (a⊥ ∩ ((a⊥ ∪ b) ∩ b⊥ )) |
| 16 | 15 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∩
((a⊥ ∪ b) ∩ b⊥ )) = ((a⊥ ∩ (a⊥ ∪ b)) ∩ b⊥ ) |
| 17 | | anabs 121 |
. . . . . . . . . 10
(a⊥ ∩ (a⊥ ∪ b)) = a⊥ |
| 18 | 17 | ran 78 |
. . . . . . . . 9
((a⊥ ∩
(a⊥ ∪ b)) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
| 19 | | ancom 74 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
| 20 | 18, 19 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩
(a⊥ ∪ b)) ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
| 21 | 16, 20 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩
((a⊥ ∪ b) ∩ b⊥ )) = (b⊥ ∩ a⊥ ) |
| 22 | 14, 21 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ (b⊥ ∩ (a →4 b))) = (b⊥ ∩ a⊥ ) |
| 23 | 10, 22 | ax-r2 36 |
. . . . 5
((a⊥ ∩ b⊥ ) ∩ (a →4 b)) = (b⊥ ∩ a⊥ ) |
| 24 | 9, 23 | 2or 72 |
. . . 4
((b ∩ (a →4 b)) ∪ ((a⊥ ∩ b⊥ ) ∩ (a →4 b))) = ((b ∩
(a →4 b)) ∪ (b⊥ ∩ a⊥ )) |
| 25 | | comanr1 464 |
. . . . . . 7
b⊥ C
(b⊥ ∩ a⊥ ) |
| 26 | 25 | comcom6 459 |
. . . . . 6
b C (b⊥ ∩ a⊥ ) |
| 27 | 26, 3 | fh4r 476 |
. . . . 5
((b ∩ (a →4 b)) ∪ (b⊥ ∩ a⊥ )) = ((b ∪ (b⊥ ∩ a⊥ )) ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) |
| 28 | 3, 26 | com2or 483 |
. . . . . . 7
b C ((a →4 b) ∪ (b⊥ ∩ a⊥ )) |
| 29 | 28, 26 | fh2r 474 |
. . . . . 6
((b ∪ (b⊥ ∩ a⊥ )) ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) = ((b ∩ ((a
→4 b) ∪ (b⊥ ∩ a⊥ ))) ∪ ((b⊥ ∩ a⊥ ) ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ )))) |
| 30 | 3, 26 | fh1 469 |
. . . . . . . . 9
(b ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) = ((b ∩ (a
→4 b)) ∪ (b ∩ (b⊥ ∩ a⊥ ))) |
| 31 | | u4lemab 613 |
. . . . . . . . . . . 12
((a →4 b) ∩ b) =
((a ∩ b) ∪ (a⊥ ∩ b)) |
| 32 | 7, 31 | ax-r2 36 |
. . . . . . . . . . 11
(b ∩ (a →4 b)) = ((a ∩
b) ∪ (a⊥ ∩ b)) |
| 33 | 32 | ax-r5 38 |
. . . . . . . . . 10
((b ∩ (a →4 b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) |
| 34 | | id 59 |
. . . . . . . . . 10
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) |
| 35 | 33, 34 | ax-r2 36 |
. . . . . . . . 9
((b ∩ (a →4 b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) |
| 36 | 30, 35 | ax-r2 36 |
. . . . . . . 8
(b ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) |
| 37 | | leor 159 |
. . . . . . . . 9
(b⊥ ∩ a⊥ ) ≤ ((a →4 b) ∪ (b⊥ ∩ a⊥ )) |
| 38 | 37 | df2le2 136 |
. . . . . . . 8
((b⊥ ∩ a⊥ ) ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) = (b⊥ ∩ a⊥ ) |
| 39 | 36, 38 | 2or 72 |
. . . . . . 7
((b ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) ∪ ((b⊥ ∩ a⊥ ) ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ )))) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) ∪ (b⊥ ∩ a⊥ )) |
| 40 | | ax-a3 32 |
. . . . . . . 8
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) ∪ (b⊥ ∩ a⊥ )) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((b
∩ (b⊥ ∩ a⊥ )) ∪ (b⊥ ∩ a⊥ ))) |
| 41 | | lear 161 |
. . . . . . . . . . . 12
(b ∩ (b⊥ ∩ a⊥ )) ≤ (b⊥ ∩ a⊥ ) |
| 42 | 41 | df-le2 131 |
. . . . . . . . . . 11
((b ∩ (b⊥ ∩ a⊥ )) ∪ (b⊥ ∩ a⊥ )) = (b⊥ ∩ a⊥ ) |
| 43 | | ancom 74 |
. . . . . . . . . . 11
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
| 44 | 42, 43 | ax-r2 36 |
. . . . . . . . . 10
((b ∩ (b⊥ ∩ a⊥ )) ∪ (b⊥ ∩ a⊥ )) = (a⊥ ∩ b⊥ ) |
| 45 | 44 | lor 70 |
. . . . . . . . 9
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((b
∩ (b⊥ ∩ a⊥ )) ∪ (b⊥ ∩ a⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
| 46 | | df-i5 48 |
. . . . . . . . . . 11
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
| 47 | 46 | ax-r1 35 |
. . . . . . . . . 10
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = (a →5 b) |
| 48 | | id 59 |
. . . . . . . . . 10
(a →5 b) = (a
→5 b) |
| 49 | 47, 48 | ax-r2 36 |
. . . . . . . . 9
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = (a →5 b) |
| 50 | 45, 49 | ax-r2 36 |
. . . . . . . 8
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((b
∩ (b⊥ ∩ a⊥ )) ∪ (b⊥ ∩ a⊥ ))) = (a →5 b) |
| 51 | 40, 50 | ax-r2 36 |
. . . . . . 7
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) ∪ (b⊥ ∩ a⊥ )) = (a →5 b) |
| 52 | 39, 51 | ax-r2 36 |
. . . . . 6
((b ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) ∪ ((b⊥ ∩ a⊥ ) ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ )))) = (a →5 b) |
| 53 | 29, 52 | ax-r2 36 |
. . . . 5
((b ∪ (b⊥ ∩ a⊥ )) ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) = (a →5 b) |
| 54 | 27, 53 | ax-r2 36 |
. . . 4
((b ∩ (a →4 b)) ∪ (b⊥ ∩ a⊥ )) = (a →5 b) |
| 55 | 24, 54 | ax-r2 36 |
. . 3
((b ∩ (a →4 b)) ∪ ((a⊥ ∩ b⊥ ) ∩ (a →4 b))) = (a
→5 b) |
| 56 | 6, 55 | ax-r2 36 |
. 2
((b ∪ (a⊥ ∩ b⊥ )) ∩ (a →4 b)) = (a
→5 b) |
| 57 | 2, 56 | ax-r2 36 |
1
((a →2 b) ∩ (a
→4 b)) = (a →5 b) |