Proof of Theorem u24lem
Step | Hyp | Ref
| Expression |
1 | | df-i2 45 |
. . 3
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
2 | 1 | ran 78 |
. 2
((a →2 b) ∩ (a
→4 b)) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ (a →4 b)) |
3 | | u4lemc1 683 |
. . . 4
b C (a →4 b) |
4 | | comanr2 465 |
. . . . 5
b⊥ C
(a⊥ ∩ b⊥ ) |
5 | 4 | comcom6 459 |
. . . 4
b C (a⊥ ∩ b⊥ ) |
6 | 3, 5 | fh2r 474 |
. . 3
((b ∪ (a⊥ ∩ b⊥ )) ∩ (a →4 b)) = ((b ∩
(a →4 b)) ∪ ((a⊥ ∩ b⊥ ) ∩ (a →4 b))) |
7 | | ancom 74 |
. . . . . 6
(b ∩ (a →4 b)) = ((a
→4 b) ∩ b) |
8 | | ancom 74 |
. . . . . 6
((a →4 b) ∩ b) =
(b ∩ (a →4 b)) |
9 | 7, 8 | ax-r2 36 |
. . . . 5
(b ∩ (a →4 b)) = (b ∩
(a →4 b)) |
10 | | anass 76 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ (a →4 b)) = (a⊥ ∩ (b⊥ ∩ (a →4 b))) |
11 | | ancom 74 |
. . . . . . . . 9
(b⊥ ∩ (a →4 b)) = ((a
→4 b) ∩ b⊥ ) |
12 | | u4lemanb 618 |
. . . . . . . . 9
((a →4 b) ∩ b⊥ ) = ((a⊥ ∪ b) ∩ b⊥ ) |
13 | 11, 12 | ax-r2 36 |
. . . . . . . 8
(b⊥ ∩ (a →4 b)) = ((a⊥ ∪ b) ∩ b⊥ ) |
14 | 13 | lan 77 |
. . . . . . 7
(a⊥ ∩ (b⊥ ∩ (a →4 b))) = (a⊥ ∩ ((a⊥ ∪ b) ∩ b⊥ )) |
15 | | anass 76 |
. . . . . . . . 9
((a⊥ ∩
(a⊥ ∪ b)) ∩ b⊥ ) = (a⊥ ∩ ((a⊥ ∪ b) ∩ b⊥ )) |
16 | 15 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∩
((a⊥ ∪ b) ∩ b⊥ )) = ((a⊥ ∩ (a⊥ ∪ b)) ∩ b⊥ ) |
17 | | anabs 121 |
. . . . . . . . . 10
(a⊥ ∩ (a⊥ ∪ b)) = a⊥ |
18 | 17 | ran 78 |
. . . . . . . . 9
((a⊥ ∩
(a⊥ ∪ b)) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
19 | | ancom 74 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
20 | 18, 19 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩
(a⊥ ∪ b)) ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
21 | 16, 20 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩
((a⊥ ∪ b) ∩ b⊥ )) = (b⊥ ∩ a⊥ ) |
22 | 14, 21 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ (b⊥ ∩ (a →4 b))) = (b⊥ ∩ a⊥ ) |
23 | 10, 22 | ax-r2 36 |
. . . . 5
((a⊥ ∩ b⊥ ) ∩ (a →4 b)) = (b⊥ ∩ a⊥ ) |
24 | 9, 23 | 2or 72 |
. . . 4
((b ∩ (a →4 b)) ∪ ((a⊥ ∩ b⊥ ) ∩ (a →4 b))) = ((b ∩
(a →4 b)) ∪ (b⊥ ∩ a⊥ )) |
25 | | comanr1 464 |
. . . . . . 7
b⊥ C
(b⊥ ∩ a⊥ ) |
26 | 25 | comcom6 459 |
. . . . . 6
b C (b⊥ ∩ a⊥ ) |
27 | 26, 3 | fh4r 476 |
. . . . 5
((b ∩ (a →4 b)) ∪ (b⊥ ∩ a⊥ )) = ((b ∪ (b⊥ ∩ a⊥ )) ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) |
28 | 3, 26 | com2or 483 |
. . . . . . 7
b C ((a →4 b) ∪ (b⊥ ∩ a⊥ )) |
29 | 28, 26 | fh2r 474 |
. . . . . 6
((b ∪ (b⊥ ∩ a⊥ )) ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) = ((b ∩ ((a
→4 b) ∪ (b⊥ ∩ a⊥ ))) ∪ ((b⊥ ∩ a⊥ ) ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ )))) |
30 | 3, 26 | fh1 469 |
. . . . . . . . 9
(b ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) = ((b ∩ (a
→4 b)) ∪ (b ∩ (b⊥ ∩ a⊥ ))) |
31 | | u4lemab 613 |
. . . . . . . . . . . 12
((a →4 b) ∩ b) =
((a ∩ b) ∪ (a⊥ ∩ b)) |
32 | 7, 31 | ax-r2 36 |
. . . . . . . . . . 11
(b ∩ (a →4 b)) = ((a ∩
b) ∪ (a⊥ ∩ b)) |
33 | 32 | ax-r5 38 |
. . . . . . . . . 10
((b ∩ (a →4 b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) |
34 | | id 59 |
. . . . . . . . . 10
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) |
35 | 33, 34 | ax-r2 36 |
. . . . . . . . 9
((b ∩ (a →4 b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) |
36 | 30, 35 | ax-r2 36 |
. . . . . . . 8
(b ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) |
37 | | leor 159 |
. . . . . . . . 9
(b⊥ ∩ a⊥ ) ≤ ((a →4 b) ∪ (b⊥ ∩ a⊥ )) |
38 | 37 | df2le2 136 |
. . . . . . . 8
((b⊥ ∩ a⊥ ) ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) = (b⊥ ∩ a⊥ ) |
39 | 36, 38 | 2or 72 |
. . . . . . 7
((b ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) ∪ ((b⊥ ∩ a⊥ ) ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ )))) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) ∪ (b⊥ ∩ a⊥ )) |
40 | | ax-a3 32 |
. . . . . . . 8
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) ∪ (b⊥ ∩ a⊥ )) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((b
∩ (b⊥ ∩ a⊥ )) ∪ (b⊥ ∩ a⊥ ))) |
41 | | lear 161 |
. . . . . . . . . . . 12
(b ∩ (b⊥ ∩ a⊥ )) ≤ (b⊥ ∩ a⊥ ) |
42 | 41 | df-le2 131 |
. . . . . . . . . . 11
((b ∩ (b⊥ ∩ a⊥ )) ∪ (b⊥ ∩ a⊥ )) = (b⊥ ∩ a⊥ ) |
43 | | ancom 74 |
. . . . . . . . . . 11
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
44 | 42, 43 | ax-r2 36 |
. . . . . . . . . 10
((b ∩ (b⊥ ∩ a⊥ )) ∪ (b⊥ ∩ a⊥ )) = (a⊥ ∩ b⊥ ) |
45 | 44 | lor 70 |
. . . . . . . . 9
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((b
∩ (b⊥ ∩ a⊥ )) ∪ (b⊥ ∩ a⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
46 | | df-i5 48 |
. . . . . . . . . . 11
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
47 | 46 | ax-r1 35 |
. . . . . . . . . 10
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = (a →5 b) |
48 | | id 59 |
. . . . . . . . . 10
(a →5 b) = (a
→5 b) |
49 | 47, 48 | ax-r2 36 |
. . . . . . . . 9
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = (a →5 b) |
50 | 45, 49 | ax-r2 36 |
. . . . . . . 8
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((b
∩ (b⊥ ∩ a⊥ )) ∪ (b⊥ ∩ a⊥ ))) = (a →5 b) |
51 | 40, 50 | ax-r2 36 |
. . . . . . 7
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (b
∩ (b⊥ ∩ a⊥ ))) ∪ (b⊥ ∩ a⊥ )) = (a →5 b) |
52 | 39, 51 | ax-r2 36 |
. . . . . 6
((b ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) ∪ ((b⊥ ∩ a⊥ ) ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ )))) = (a →5 b) |
53 | 29, 52 | ax-r2 36 |
. . . . 5
((b ∪ (b⊥ ∩ a⊥ )) ∩ ((a →4 b) ∪ (b⊥ ∩ a⊥ ))) = (a →5 b) |
54 | 27, 53 | ax-r2 36 |
. . . 4
((b ∩ (a →4 b)) ∪ (b⊥ ∩ a⊥ )) = (a →5 b) |
55 | 24, 54 | ax-r2 36 |
. . 3
((b ∩ (a →4 b)) ∪ ((a⊥ ∩ b⊥ ) ∩ (a →4 b))) = (a
→5 b) |
56 | 6, 55 | ax-r2 36 |
. 2
((b ∪ (a⊥ ∩ b⊥ )) ∩ (a →4 b)) = (a
→5 b) |
57 | 2, 56 | ax-r2 36 |
1
((a →2 b) ∩ (a
→4 b)) = (a →5 b) |