Proof of Theorem u3lem10
| Step | Hyp | Ref
| Expression |
| 1 | | df-i3 46 |
. 2
(a →3 (a⊥ ∩ (a ∪ b))) =
(((a⊥ ∩ (a⊥ ∩ (a ∪ b)))
∪ (a⊥ ∩ (a⊥ ∩ (a ∪ b))⊥ )) ∪ (a ∩ (a⊥ ∪ (a⊥ ∩ (a ∪ b))))) |
| 2 | | anass 76 |
. . . . . . . 8
((a⊥ ∩ a⊥ ) ∩ (a ∪ b)) =
(a⊥ ∩ (a⊥ ∩ (a ∪ b))) |
| 3 | 2 | ax-r1 35 |
. . . . . . 7
(a⊥ ∩ (a⊥ ∩ (a ∪ b))) =
((a⊥ ∩ a⊥ ) ∩ (a ∪ b)) |
| 4 | | anidm 111 |
. . . . . . . 8
(a⊥ ∩ a⊥ ) = a⊥ |
| 5 | 4 | ran 78 |
. . . . . . 7
((a⊥ ∩ a⊥ ) ∩ (a ∪ b)) =
(a⊥ ∩ (a ∪ b)) |
| 6 | 3, 5 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ (a⊥ ∩ (a ∪ b))) =
(a⊥ ∩ (a ∪ b)) |
| 7 | | anor3 90 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
| 8 | 7 | lor 70 |
. . . . . . . . . 10
(a ∪ (a⊥ ∩ b⊥ )) = (a ∪ (a ∪
b)⊥ ) |
| 9 | | oran1 91 |
. . . . . . . . . 10
(a ∪ (a ∪ b)⊥ ) = (a⊥ ∩ (a ∪ b))⊥ |
| 10 | 8, 9 | ax-r2 36 |
. . . . . . . . 9
(a ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∩ (a ∪ b))⊥ |
| 11 | 10 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∩ (a ∪ b))⊥ = (a ∪ (a⊥ ∩ b⊥ )) |
| 12 | 11 | lan 77 |
. . . . . . 7
(a⊥ ∩ (a⊥ ∩ (a ∪ b))⊥ ) = (a⊥ ∩ (a ∪ (a⊥ ∩ b⊥ ))) |
| 13 | | omlan 448 |
. . . . . . 7
(a⊥ ∩ (a ∪ (a⊥ ∩ b⊥ ))) = (a⊥ ∩ b⊥ ) |
| 14 | 12, 13 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ (a⊥ ∩ (a ∪ b))⊥ ) = (a⊥ ∩ b⊥ ) |
| 15 | 6, 14 | 2or 72 |
. . . . 5
((a⊥ ∩
(a⊥ ∩ (a ∪ b)))
∪ (a⊥ ∩ (a⊥ ∩ (a ∪ b))⊥ )) = ((a⊥ ∩ (a ∪ b))
∪ (a⊥ ∩ b⊥ )) |
| 16 | | comanr1 464 |
. . . . . . 7
a⊥ C
(a⊥ ∩ b⊥ ) |
| 17 | | comorr 184 |
. . . . . . . 8
a C (a ∪ b) |
| 18 | 17 | comcom3 454 |
. . . . . . 7
a⊥ C
(a ∪ b) |
| 19 | 16, 18 | fh4r 476 |
. . . . . 6
((a⊥ ∩
(a ∪ b)) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∪ (a⊥ ∩ b⊥ )) ∩ ((a ∪ b) ∪
(a⊥ ∩ b⊥ ))) |
| 20 | | orabs 120 |
. . . . . . . 8
(a⊥ ∪ (a⊥ ∩ b⊥ )) = a⊥ |
| 21 | 7 | lor 70 |
. . . . . . . . 9
((a ∪ b) ∪ (a⊥ ∩ b⊥ )) = ((a ∪ b) ∪
(a ∪ b)⊥ ) |
| 22 | | df-t 41 |
. . . . . . . . . 10
1 = ((a ∪ b) ∪ (a
∪ b)⊥
) |
| 23 | 22 | ax-r1 35 |
. . . . . . . . 9
((a ∪ b) ∪ (a
∪ b)⊥ ) =
1 |
| 24 | 21, 23 | ax-r2 36 |
. . . . . . . 8
((a ∪ b) ∪ (a⊥ ∩ b⊥ )) = 1 |
| 25 | 20, 24 | 2an 79 |
. . . . . . 7
((a⊥ ∪
(a⊥ ∩ b⊥ )) ∩ ((a ∪ b) ∪
(a⊥ ∩ b⊥ ))) = (a⊥ ∩ 1) |
| 26 | | an1 106 |
. . . . . . 7
(a⊥ ∩ 1) =
a⊥ |
| 27 | 25, 26 | ax-r2 36 |
. . . . . 6
((a⊥ ∪
(a⊥ ∩ b⊥ )) ∩ ((a ∪ b) ∪
(a⊥ ∩ b⊥ ))) = a⊥ |
| 28 | 19, 27 | ax-r2 36 |
. . . . 5
((a⊥ ∩
(a ∪ b)) ∪ (a⊥ ∩ b⊥ )) = a⊥ |
| 29 | 15, 28 | ax-r2 36 |
. . . 4
((a⊥ ∩
(a⊥ ∩ (a ∪ b)))
∪ (a⊥ ∩ (a⊥ ∩ (a ∪ b))⊥ )) = a⊥ |
| 30 | | orabs 120 |
. . . . . 6
(a⊥ ∪ (a⊥ ∩ (a ∪ b))) =
a⊥ |
| 31 | 30 | lan 77 |
. . . . 5
(a ∩ (a⊥ ∪ (a⊥ ∩ (a ∪ b)))) =
(a ∩ a⊥ ) |
| 32 | | ancom 74 |
. . . . 5
(a ∩ a⊥ ) = (a⊥ ∩ a) |
| 33 | 31, 32 | ax-r2 36 |
. . . 4
(a ∩ (a⊥ ∪ (a⊥ ∩ (a ∪ b)))) =
(a⊥ ∩ a) |
| 34 | 29, 33 | 2or 72 |
. . 3
(((a⊥ ∩
(a⊥ ∩ (a ∪ b)))
∪ (a⊥ ∩ (a⊥ ∩ (a ∪ b))⊥ )) ∪ (a ∩ (a⊥ ∪ (a⊥ ∩ (a ∪ b))))) =
(a⊥ ∪ (a⊥ ∩ a)) |
| 35 | | orabs 120 |
. . 3
(a⊥ ∪ (a⊥ ∩ a)) = a⊥ |
| 36 | 34, 35 | ax-r2 36 |
. 2
(((a⊥ ∩
(a⊥ ∩ (a ∪ b)))
∪ (a⊥ ∩ (a⊥ ∩ (a ∪ b))⊥ )) ∪ (a ∩ (a⊥ ∪ (a⊥ ∩ (a ∪ b))))) =
a⊥ |
| 37 | 1, 36 | ax-r2 36 |
1
(a →3 (a⊥ ∩ (a ∪ b))) =
a⊥ |