Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > comorr2 | GIF version |
Description: Commutation law. (Contributed by NM, 26-Nov-1997.) |
Ref | Expression |
---|---|
comorr2 | b C (a ∪ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comor2 462 | . 2 (a ∪ b) C b | |
2 | 1 | comcom 453 | 1 b C (a ∪ b) |
Colors of variables: term |
Syntax hints: C wc 3 ∪ wo 6 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: ud3lem1c 568 u4lemanb 618 u4lemob 633 u4lemc1 683 u4lem5 764 u4lem6 768 u3lem13b 790 3vth9 812 2oath1 826 |
Copyright terms: Public domain | W3C validator |