Proof of Theorem u4lemob
Step | Hyp | Ref
| Expression |
1 | | df-i4 47 |
. . 3
(a →4 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
2 | 1 | ax-r5 38 |
. 2
((a →4 b) ∪ b) =
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∪ b) |
3 | | or32 82 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∪ b) = ((((a ∩
b) ∪ (a⊥ ∩ b)) ∪ b)
∪ ((a⊥ ∪ b) ∩ b⊥ )) |
4 | | lear 161 |
. . . . . . 7
(a ∩ b) ≤ b |
5 | | lear 161 |
. . . . . . 7
(a⊥ ∩ b) ≤ b |
6 | 4, 5 | lel2or 170 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ b)) ≤ b |
7 | 6 | df-le2 131 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ b) =
b |
8 | 7 | ax-r5 38 |
. . . 4
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ b)
∪ ((a⊥ ∪ b) ∩ b⊥ )) = (b ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
9 | | comorr2 463 |
. . . . . 6
b C (a⊥ ∪ b) |
10 | | comid 187 |
. . . . . . 7
b C b |
11 | 10 | comcom2 183 |
. . . . . 6
b C b⊥ |
12 | 9, 11 | fh3 471 |
. . . . 5
(b ∪ ((a⊥ ∪ b) ∩ b⊥ )) = ((b ∪ (a⊥ ∪ b)) ∩ (b
∪ b⊥
)) |
13 | | or12 80 |
. . . . . . . 8
(b ∪ (a⊥ ∪ b)) = (a⊥ ∪ (b ∪ b)) |
14 | | oridm 110 |
. . . . . . . . 9
(b ∪ b) = b |
15 | 14 | lor 70 |
. . . . . . . 8
(a⊥ ∪ (b ∪ b)) =
(a⊥ ∪ b) |
16 | 13, 15 | ax-r2 36 |
. . . . . . 7
(b ∪ (a⊥ ∪ b)) = (a⊥ ∪ b) |
17 | | df-t 41 |
. . . . . . . 8
1 = (b ∪ b⊥ ) |
18 | 17 | ax-r1 35 |
. . . . . . 7
(b ∪ b⊥ ) = 1 |
19 | 16, 18 | 2an 79 |
. . . . . 6
((b ∪ (a⊥ ∪ b)) ∩ (b
∪ b⊥ )) = ((a⊥ ∪ b) ∩ 1) |
20 | | an1 106 |
. . . . . 6
((a⊥ ∪ b) ∩ 1) = (a⊥ ∪ b) |
21 | 19, 20 | ax-r2 36 |
. . . . 5
((b ∪ (a⊥ ∪ b)) ∩ (b
∪ b⊥ )) = (a⊥ ∪ b) |
22 | 12, 21 | ax-r2 36 |
. . . 4
(b ∪ ((a⊥ ∪ b) ∩ b⊥ )) = (a⊥ ∪ b) |
23 | 8, 22 | ax-r2 36 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ b)
∪ ((a⊥ ∪ b) ∩ b⊥ )) = (a⊥ ∪ b) |
24 | 3, 23 | ax-r2 36 |
. 2
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∪ b) = (a⊥ ∪ b) |
25 | 2, 24 | ax-r2 36 |
1
((a →4 b) ∪ b) =
(a⊥ ∪ b) |